Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 964
Filtrar
1.
Virus Res ; 347: 199437, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002567

RESUMO

The global monkeypox virus (MPXV) outbreak in 2022 emphasizes the urgent need for effective and accessible new-generation vaccines and neutralizing antibodies. Herein, we identified MPXV-neutralizing antibodies using high-throughput single-cell RNA and V(D)J sequencing of antigen-sorted B cells from patients with convalescent monkeypox. IgG1-expressing B cells were obtained from 34 paired heavy- and light-chain B cell receptor sequences. Subsequently, three potent neutralizing antibodies, MV127, MV128, and MV129, were identified and reacted with the MPXV A35 protein. Among these, MV129, which has a half-maximal inhibitory concentration of 2.68µg/mL against authentic MPXV, was considered to be the putative candidates for MPXV neutralization in response to monkeypox disease.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos B , Sequenciamento de Nucleotídeos em Larga Escala , Monkeypox virus , Mpox , Anticorpos Neutralizantes/imunologia , Humanos , Anticorpos Antivirais/imunologia , Monkeypox virus/imunologia , Monkeypox virus/genética , Mpox/imunologia , Mpox/virologia , Linfócitos B/imunologia , Imunoglobulina G/imunologia , Feminino , Masculino , Adulto , Testes de Neutralização , Pessoa de Meia-Idade
2.
Adv Healthc Mater ; : e2304108, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979870

RESUMO

Many diseases are associated with genetic mutation and expression of mutated proteins, such as cancers. Therapeutic approaches that selectively target the synthesis process of multiple proteins show greater potential compared to single-protein approaches in oncological diseases. However, conventional agents to regulate the synthesis of multiple protein still suffer from poor spatiotemporal selectivity and stability. Here, a new method using a dye-peptide conjugate, PRFK, for multi-protein interference with spatiotemporal selectivity and reliable stability, is reported. By using the peptide sequence that targets tumor cells, PRFK can be efficiently taken up, followed by specific binding to the KDELR (KDEL receptor) protein located in the endoplasmic reticulum (ER). The dye generates 1O2 under light irradiation, enabling photodynamic therapy. This process converts the furan group into a cytidine-reactive intermediate, which covalently binds to mRNA, thereby blocking protein synthesis. Upon treating 4T1 cells, the proteomics data show alterations in apoptosis, ferroptosis, proliferation, migration, invasion, and immune infiltration, suggesting that multi-protein interference leads to the disruption of cellular physiological activities, ultimately achieving tumor treatment. This study presents a multi-protein interference probe with the potential for protein interference within various subcellular organelles in the future.

3.
J Exerc Sci Fit ; 22(4): 322-328, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38947123

RESUMO

Background: The perceived benefits and barriers to physical activity play crucial roles in determining daily physical activity levels. However, previous studies have employed tools lacking adequate validation, leading to inconsistent conclusions about the impact of these two factors. Therefore, this national, population-based study was conducted to assess the psychometric properties, measurement invariance, and predictive validity of the Chinese versions of the perceived benefits (C-PBEPA) and barriers to physical activity (C-PBAPA) scales. Methods: The final sample (N = 2942, 49.3 % for boys) was randomly split into two subsamples. The first subsample was used for exploratory factor analysis and the second subsample was used for confirmatory factor analysis. Measurement invariance across gender and age groups were examined. Structural equation models were developed to examine the predictive validity of the revised C-PBEPA and C-PBAPA on moderate to vigorous PA. Results: The results showed that both scales were unidimensional, had excellent model fit (e.g., X 2/df < 3, CFI >0.9, RMSEA <0.06) and demonstrated convergent validity. Findings also revealed lack of scalar invariance for C-PBAPA between preadolescents and adolescents' groups (ΔCFI >0.01) and supported the predictive validity of both scales (p < 0.001). Conclusion: The study demonstrated that the revised C-PBEPA and C-PBAPA are valid scales for measuring Chinese adolescents' perceived benefits and barriers to PA.

4.
Small ; : e2400179, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031523

RESUMO

With the rapid development of micro/nano machining, there is an elevated demand for high-performance microdevices with high reliability and low cost. Due to their outstanding electrochemical, optical, electrical, and mechanical performance, carbon materials are extensively utilized in constructing microdevices for energy storage, sensing, and optoelectronics. Carbon micro/nano machining is fundamental in carbon-based intelligent microelectronics, multifunctional integrated microsystems, high-reliability portable/wearable consumer electronics, and portable medical diagnostic systems. Despite numerous reviews on carbon materials, a comprehensive overview is lacking that systematically encapsulates the development of high-performance microdevices based on carbon micro/nano structures, from structural design to manufacturing strategies and specific applications. This review focuses on the latest progress in carbon micro/nano machining toward miniaturized device, including structural engineering, large-scale fabrication, and performance optimization. Especially, the review targets an in-depth evaluation of carbon-based micro energy storage devices, microsensors, microactuators, miniaturized photoresponsive and electromagnetic interference shielding devices. Moreover, it highlights the challenges and opportunities in the large-scale manufacturing of carbon-based microdevices, aiming to spark further exciting research directions and application prospectives.

5.
Rheumatol Adv Pract ; 8(3): rkae080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055542

RESUMO

Objective: To characterize BMI in Chinese patients with RA vs US patients and examine its association with joint damage in Chinese patients. Methods: Each of the 1318 patients from a real-world Chinese RA population was first stratified by gender and then individually age-matched with one American RA patient from the US National Health and Nutritional Examination Survey 1999-2018. Data on BMI, bilateral hand radiographs and risk factors at enrolment were collected but radiographs were unavailable for the American patients. Logistic regression was used to evaluate the association of BMI with radiographic joint damage (RJD) in Chinese patients. Results: Chinese patients had a significantly lower BMI [(weighted) median 21.8 vs 29.8 kg/m2; P < 0.001] and a higher prevalence of being underweight (15.2% vs 1.1%; P < 0.05) than their American counterparts. Underweight Chinese patients (BMI <18.5) had higher modified total Sharp scores (median 17 vs 10) and joint space narrowing (JSN) subscores (median 6 vs 2) (both P < 0.05) than normal-weight patients (BMI ≥18.5-<24). After controlling for confounding, continuous BMI was cross-sectionally negatively associated with RJD [adjusted prevalence odds ratio (OR) 0.90 (95% CI 0.85, 0.96)] and JSN [adjusted prevalence OR 0.92 (95% CI 0.87, 0.96)]; being underweight vs normal weight was associated with RJD [adjusted prevalence OR 2.14 (95% CI 1.37, 3.35)] and JSN [adjusted prevalence OR 1.77 (95% CI 1.10, 2.84)]. Conclusion: Low BMI and being underweight were cross-sectionally associated with joint damage in Chinese RA patients, especially JSN, suggesting the clinical importance of identifying underweight patients and focusing on weight gain to prevent joint damage.

6.
Light Sci Appl ; 13(1): 172, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025829

RESUMO

Independent controls of various properties of electromagnetic (EM) waves are crucially required in a wide range of applications. Programmable metasurface is a promising candidate to provide an advanced platform for manipulating EM waves. Here, we propose an approach that can arbitrarily control the polarization direction and phases of reflected waves in linear and nonlinear ways using a stacked programmable metasurface. Further, we extend the space-time-coding theory to incorporate the dimension of polarization, which provides an extra degree of freedom for manipulating EM waves. As proof-of-principle application examples, we consider polarization rotation, phase manipulation, and beam steering at linear and nonlinear frequencies. For validation, we design, fabricate, and measure a metasurface sample. The experimental results show good agreement with theoretical predictions and simulations. The proposed approach has a wide range of applications in various areas, such as imaging, data storage, and wireless communication.

7.
Adv Sci (Weinh) ; : e2403624, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900065

RESUMO

Dual-polarization programmable metasurfaces can flexibly manipulate electromagnetic (EM) waves while providing approximately twice the information capacity. Therefore, they hold significant applications in next-generation communication systems. However, there are three challenges associated with the existing dual-polarization programmable metasurfaces. This article aims to propose a novel design to address them. First, the design overcomes the challenge of element- and polarization-independent controls, enabling more powerful manipulations of EM waves. Second, by using more energy-efficient tunable components and reducing their number, the design can be nearly passive (maximum power consumption of 27.7 mW), leading to a significant decrease in the cost and power consumption of the system (at least two orders of magnitude lower than the power consumption of conventional programmable metasurfaces). Third, the design can operate in a broad bandwidth, which is attractive for practical engineering applications. Both the element and array of the metasurface are meticulously designed, and their performance has been carefully studied. The experiments demonstrate that 2D wide-angle beam scanning can be realized. Moreover, secure communication based on directional information modulation can be implemented by exploiting the metasurface and an efficient discrete optimization algorithm, showing its programmable, multiplexing, broadband, green, and secure features.

8.
Hum Reprod Update ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942605

RESUMO

BACKGROUND: Chemotherapy-associated ovarian damage (CAOD) is one of the most feared short- and long-term side effects of anticancer treatment in premenopausal women. Accumulating detailed data show that different chemotherapy regimens can lead to disturbance of ovarian hormone levels, reduced or lost fertility, and an increased risk of early menopause. Previous studies have often focused on the direct effects of chemotherapeutic drugs on ovarian follicles, such as direct DNA damage-mediated apoptotic death and primordial follicle burnout. Emerging evidence has revealed an imbalance in the ovarian microenvironment during chemotherapy. The ovarian microenvironment provides nutritional support and transportation of signals that stimulate the growth and development of follicles, ovulation, and corpus luteum formation. The close interaction between the ovarian microenvironment and follicles can determine ovarian function. Therefore, designing novel and precise strategies to manipulate the ovarian microenvironment may be a new strategy to protect ovarian function during chemotherapy. OBJECTIVE AND RATIONALE: This review details the changes that occur in the ovarian microenvironment during chemotherapy and emphasizes the importance of developing new therapeutics that protect ovarian function by targeting the ovarian microenvironment during chemotherapy. SEARCH METHODS: A comprehensive review of the literature was performed by searching PubMed up to April 2024. Search terms included 'ovarian microenvironment' (ovarian extracellular matrix, ovarian stromal cells, ovarian interstitial, ovarian blood vessels, ovarian lymphatic vessels, ovarian macrophages, ovarian lymphocytes, ovarian immune cytokines, ovarian oxidative stress, ovarian reactive oxygen species, ovarian senescence cells, ovarian senescence-associated secretory phenotypes, ovarian oogonial stem cells, ovarian stem cells), terms related to ovarian function (reproductive health, fertility, infertility, fecundity, ovarian reserve, ovarian function, menopause, decreased ovarian reserve, premature ovarian insufficiency/failure), and terms related to chemotherapy (cyclophosphamide, lfosfamide, chlormethine, chlorambucil, busulfan, melphalan, procarbazine, cisplatin, doxorubicin, carboplatin, taxane, paclitaxel, docetaxel, 5-fluorouraci, vincristine, methotrexate, dactinomycin, bleomycin, mercaptopurine). OUTCOMES: The ovarian microenvironment shows great changes during chemotherapy, inducing extracellular matrix deposition and stromal fibrosis, angiogenesis disorders, immune microenvironment disturbance, oxidative stress imbalances, ovarian stem cell exhaustion, and cell senescence, thereby lowering the quantity and quality of ovarian follicles. Several methods targeting the ovarian microenvironment have been adopted to prevent and treat CAOD, such as stem cell therapy and the use of free radical scavengers, senolytherapies, immunomodulators, and proangiogenic factors. WIDER IMPLICATIONS: Ovarian function is determined by its 'seeds' (follicles) and 'soil' (ovarian microenvironment). The ovarian microenvironment has been reported to play a vital role in CAOD and targeting the ovarian microenvironment may present potential therapeutic approaches for CAOD. However, the relation between the ovarian microenvironment, its regulatory networks, and CAOD needs to be further studied. A better understanding of these issues could be helpful in explaining the pathogenesis of CAOD and creating innovative strategies for counteracting the effects exerted on ovarian function. Our aim is that this narrative review of CAOD will stimulate more research in this important field. REGISTRATION NUMBER: Not applicable.

9.
Front Cell Infect Microbiol ; 14: 1412478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903942

RESUMO

In the post-COVID-19 era, the co-circulation of respiratory viruses, including influenza, SARS-CoV-2, and respiratory syncytial virus (RSV), continues to have significant health impacts and presents ongoing public health challenges. Vaccination remains the most effective measure for preventing viral infections. To address the concurrent circulation of these respiratory viruses, extensive efforts have been dedicated to the development of combined vaccines. These vaccines utilize a range of platforms, including mRNA-based vaccines, viral vector vaccines, and subunit vaccines, providing opportunities in addressing multiple pathogens at once. This review delves into the major advancements in the field of combined vaccine research, underscoring the strategic use of various platforms to tackle the simultaneous circulation of respiratory viruses effectively.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , SARS-CoV-2 , Humanos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Vacinas contra COVID-19/imunologia , Vacinas Combinadas/imunologia , Vacinas Combinadas/administração & dosagem , Desenvolvimento de Vacinas , Vacinas Virais/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinação , Animais
10.
Exploration (Beijing) ; 4(3): 20230086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38939869

RESUMO

The ongoing mutations of the SARS-CoV-2 pose serious challenges to the efficacy of the available antiviral drugs, and new drugs with fantastic efficacy are always deserved investigation. Here, a nanobody called IBT-CoV144 is reported, which exhibits broad neutralizing activity against SARS-CoV-2 by inducing the conformation of spike trimer dimers. IBT-CoV144 was isolated from an immunized alpaca using the RBD of wild-type SARS-CoV-2, and it showed strong cross-reactive binding and neutralizing potency against diverse SARS-CoV-2 variants, including Omicron subvariants. Moreover, the prophylactically and therapeutically intranasal administration of IBT-CoV144 confers fantastic protective efficacy against the challenge of Omicron BA.1 variant in BALB/c mice model. The structure analysis of the complex between spike (S) protein, conducted using Cryo-EM, revealed a special conformation known as the trimer dimers. This conformation is formed by two trimers, with six RBDs in the "up" state and bound by six VHHs. IBT-CoV144 binds to the lateral region of the RBD on the S protein, facilitating the aggregation of S proteins. This aggregation results in steric hindrance, which disrupts the recognition of the virus by ACE2 on host cells. The discovery of IBT-CoV144 will provide valuable insights for the development of advanced therapeutics and the design of next-generation vaccines.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38867107

RESUMO

PURPOSE: Fluorescence imaging-guided surgery has been used in oncology. However, for tiny tumors, the current imaging probes are still difficult to achieve high-contrast imaging, leading to incomplete resection. In this study, we achieved precise surgical resection of tiny metastatic cancers by constructing an engineering erythrocyte membrane-camouflaged bioprobe (AR-M@HMSN@P). METHODS: AR-M@HMSN@P combined the properties of aggregation-induced emission luminogens (AIEgens) named PF3-PPh3 (P), with functional erythrocyte membrane modified by a modular peptide (AR). Interestingly, AR was composed of an asymmetric tripodal pentapeptide scaffold (GGKGG) with three appended modulars: KPSSPPEE (A6) peptide, RRRR (R4) peptide and cholesterol. To verify the specificity of the probe in vitro, SKOV3 cells with overexpression of CD44 were used as the positive group, and HLF cells with low expression of CD44 were devoted as the control group. The AR-M@HMSN@P fluorescence imaging was utilized to provide surgical guidance for the removal of micro-metastatic lesions. RESULTS: In vivo, the clearance of AR-M@HMSN@P by the immune system was reduced due to the natural properties inherited from erythrocytes. Meanwhile, the A6 peptide on AR-M@HMSN@P was able to specifically target CD44 on ovarian cancer cells, and the electrostatic attraction between the R4 peptide and the cell membrane enhanced the firmness of this targeting. Benefiting from these multiple effects, AR-M@HMSN@P achieved ultra-precise tumor imaging with a signal-to-noise ratio (SNR) of 15.2, making it possible to surgical resection of tumors < 1 mm by imaging guidance. CONCLUSION: We have successfully designed an engineered fluorescent imaging bioprobe (AR-M@HMSN@P), which can target CD44-overexpressing ovarian cancers for precise imaging and guide the resection of minor tumors. Notably, this work holds significant promise for developing biomimetic probes for clinical imaging-guided precision cancer surgery by exploiting their externally specified functional modifications.

12.
Biomed Pharmacother ; 177: 116980, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908201

RESUMO

Lymphangiogenesis at primary tumor and draining lymph nodes plays a pivotal role in tumor metastasis, which has been demonstrated to be regulated by the vascular endothelial growth factor receptor 3 (VEGFR-3) pathway. However, the effect of molecular imaging peptides, which specifically bind VEGFR-3, in tracing tumors remains unclear. We prepared a novel peptide, TMVP1448, with high-affinity to VEGFR-3. The dissociation constant (KD) of TMVP1448 with VEGFR-3 was 7.07 ×10-7 M. In vitro cellular assay showed that TMVP1448 could bind specifically with VEGFR-3. Near infrared imaging results showed that Cy7-TMVP1448 was able to accurately trace primary and metastatic cancers, and PET/CT results showed that [68Ga]Ga-DOTA-TMVP1448 was superior to commonly used radiotracers 18F-FDG. Additionally, no significant negative effect of TMVP1448 was found in mice. Our results suggested that TMVP1448 had great potential for future clinical applications in fluorescence imaging and nuclear imaging of tumors.

13.
Antiviral Res ; 228: 105942, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908521

RESUMO

Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.


Assuntos
Esfingolipídeos , Viroses , Replicação Viral , Esfingolipídeos/metabolismo , Humanos , Viroses/metabolismo , Antivirais/farmacologia , Imunidade Inata , Animais , Interações Hospedeiro-Patógeno , Vírus/metabolismo , Internalização do Vírus
14.
J Transl Med ; 22(1): 596, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926764

RESUMO

BACKGROUND: Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS: Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS: CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION: A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.


Assuntos
Carcinoma de Células Renais , Proliferação de Células , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , MicroRNAs , RNA Circular , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Pessoa de Meia-Idade , Masculino , Carcinogênese/genética , Carcinogênese/patologia , Movimento Celular/genética , Fator de Transcrição PAX5/metabolismo , Fator de Transcrição PAX5/genética , Oncogenes/genética , Sequência de Bases , Progressão da Doença , Invasividade Neoplásica , Reprodutibilidade dos Testes
15.
Nanoscale ; 16(26): 12586-12598, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38869377

RESUMO

In situ monitoring of H2O2 in cellular microenvironments plays a critical role in the early diagnosis and pretreatment of cancer, but is limited by the lack of efficient and low-cost strategies for the large-scale preparation of real-time biosensors. Herein, a universal strategy for MXene-based composite inks combined with a scalable screen-printing process is validated in large-scale manufacturing of electrochemical biosensors for in situ detection of H2O2 secreted from live cells. Compositing biocompatible carboxymethyl cellulose (CMCS) with excellent conductive MXene, a water-based ink electrode (MXene/CMCS) with tunable viscosity is efficiently printed with desirable printing accuracy. Subsequently, the MXene/CMCS@HRP electrochemical biosensor exhibits stable electrochemical performance through HRP nanoflower modification, showing rapid electron transport and high electrocatalytic capacity, and demonstrating a low limit of detection (0.29 µM) with a wide linear detection range (0.5 µM-3 mM), superior sensitivity (56.45 µA mM-1 cm-2), long-term stability and high anti-interference ability. Moreover, this electrochemical biosensor is effectively employed for in situ detection of H2O2 secreted from HeLa cells, revealing good biocompatibility and outstanding biosensing capability. This proposed strategy not only extends the possibility of low-cost biomedical devices, but also provides a promising approach for early diagnosis and treatment of cancer.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/análise , Humanos , Células HeLa , Carboximetilcelulose Sódica/química , Limite de Detecção , Neoplasias/diagnóstico
16.
Am J Nucl Med Mol Imaging ; 14(2): 110-121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737640

RESUMO

Molecular imaging enables visualization and characterization of biological processes that influence tumor behavior and response to therapy. The TMTP1 (NVVRQ) peptide has shown remarkable affinity to highly metastatic tumors and and its potential receptor is aminopeptidase P2. In this study, we have designed and synthesized a 68Ga-labeled cyclic TMTP1 radiotracer (68Ga-DOTA-TMTP1), for PET imaging of cervical cancer. The goal of this study was to investigate the properties of this radiotracer and its tumor diagnostic potential. The radiochemical yield of 68Ga-DOTA-TMTP1 was high and the radiochemical purity was greater than 95%. The octanol-water partition coefficient for 68Ga-DOTA-TMTP1 was -2.76 ± 0.08 and 68Ga-DOTA-TMTP1 has showed excellent stability in in vitro studies. The cellular uptake and efflux of 68Ga-DOTA-TMTP1 in paired highly metastatic and lowly metastatic cervical cancer cell line HeLa and C-33A as well as normal cervical epithelial cell line End1 were measured in a γ counter. 68Ga-DOTA-TMTP1 exhibited higher uptake in HeLa cells than in C-33A cells. The binding to HeLa and C-33A cells could be blocked by excess TMTP1. On microPET images, HeLa tumors were clearly visualized within 60 min and the uptake of the radiotracer in HeLa tumors was higher than that of C-33A tumors. After blocking with TMTP1, HeLa tumors uptake was significantly reduced and the specificity 68Ga-DOTA-TMTP1 was thus validated. Overall, we have successfully synthesized 68Ga-DOTA-TMTP1 with high yield and high specific activity and have demonstrated its potential role for highly metastatic tumor-targeted diagnosis.

17.
Environ Res ; 256: 119160, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754613

RESUMO

Addressing cadmium (Cd) contamination in agricultural lands is crucial, given its health implications and accumulation in crops. This study used pot experiments to evaluate the impact of foliar selenium spray (Se) (0.40 mM), corn straw biochar (1%), and pig manure (1%) on the growth of rice plants, the accumulation of Cd in rice grain, and to examine their influence on health risk indices associated with Cd exposure. The treatments were designated as follows: a control group without any amendment (CK), biochar (T1), pig manure (T2), Se (T3), Se and biochar (T4), Se and pig manure (T5), and Se along with biochar and pig manure (T6). Our results indicated that the treatments affected soil pH and redox potential and improved growth and the nitrogen and phosphorus content in rice plants. The soil-plant analysis development (SPAD) meter readings of leaves during the tillering stage indicated a 5.27%-15.86% increase in treatments T2 to T6 compared to CK. The flag leaves of T2 exhibited increases of 12.06%-38.94% for electrolyte leakage and an 82.61%-91.60% decline in SOD compared to treatments T3 to T6. Treatments T1 to T6 increased protein content; however, amylose content was significantly reduced in T6. Treatment T6 recorded the lowest Cd concentration in rice grains (0.018 mg/kg), while T2 recorded the highest (0.051 mg/kg). The CK treatment group showed a grain Cd content reduction of 29.30% compared to T2. The assessment of acceptable daily intake, hazard quotient, and carcinogenic risk revealed an ascending order as follows: T6 < T3 < T5 < T4 < T1 < CK < T2. In conclusion, the application of treatment T6 demonstrates the potential to lower oxidative stress, enhance production, reduce cancer risk, and ensure the safe cultivation of rice in environments affected by Cd contamination.


Assuntos
Cádmio , Carvão Vegetal , Esterco , Oryza , Selênio , Poluentes do Solo , Oryza/metabolismo , Oryza/química , Oryza/crescimento & desenvolvimento , Cádmio/análise , Cádmio/metabolismo , Selênio/análise , Selênio/metabolismo , Esterco/análise , Animais , Carvão Vegetal/química , Poluentes do Solo/análise , Suínos , Folhas de Planta/química , Folhas de Planta/metabolismo , Medição de Risco , Humanos
18.
Biomater Adv ; 161: 213899, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772133

RESUMO

Large bone defects, particularly those exceeding the critical size, present a clinical challenge due to the limited regenerative capacity of bone tissue. Traditional treatments like autografts and allografts are constrained by donor availability, immune rejection, and mechanical performance. This study aimed to develop an effective solution by designing gradient gyroid scaffolds with titania (TiO2) surface modification for the repair of large segmental bone defects. The scaffolds were engineered to balance mechanical strength with the necessary internal space to promote new bone formation and nutrient exchange. A gradient design of the scaffold was optimized through Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) simulations to enhance fluid flow and cell adhesion. In vivo studies in rabbits demonstrated that the G@TiO2 scaffold, featuring a gradient structure and TiO2 surface modification, exhibited superior healing capabilities compared to the homogeneous structure and TiO2 surface modification (H@TiO2) and gradient structure (G) scaffolds. At 12 weeks post-operation, in a bone defect representing nearly 30 % of the total length of the radius, the implantation of the G@TiO2 scaffold achieved a 27 % bone volume to tissue volume (BV/TV) ratio, demonstrating excellent osseointegration. The TiO2 surface modification provided photothermal antibacterial effects, enhancing the scaffold's biocompatibility and potential for infection prevention. These findings suggest that the gradient gyroid scaffold with TiO2 surface modification is a promising candidate for treating large segmental bone defects, offering a combination of mechanical strength, bioactivity, and infection resistance.


Assuntos
Ligas , Propriedades de Superfície , Alicerces Teciduais , Titânio , Titânio/química , Animais , Coelhos , Alicerces Teciduais/química , Ligas/química , Regeneração Óssea/efeitos dos fármacos , Osseointegração/efeitos dos fármacos , Osso e Ossos , Engenharia Tecidual/métodos , Análise de Elementos Finitos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
19.
J Vasc Access ; : 11297298241254564, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38800968

RESUMO

A peripherally inserted central catheter (PICC) is commonly used for fluid infusion in patients. However, rupture is one of the most serious complications associated with PICC placement. We investigated an 81-year-old patient who experienced a catheter break nearly 11 months after the placement of PICC, followed by a catheter break during catheter capture that was removed after accessing the superior vena cava with a catcher. This case suggests that silicone-based PICCs are fragile and have a high risk of spontaneous dislocation. Therefore, they should be replaced with polyurethane-based PICCs.

20.
J Nanobiotechnology ; 22(1): 252, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750509

RESUMO

With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.


Assuntos
Envelhecimento , Sequestradores de Radicais Livres , Nanoestruturas , Estresse Oxidativo , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Humanos , Nanoestruturas/química , Envelhecimento/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...