Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 673: 690-699, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901359

RESUMO

Low photo-induced carrier recombination rate, exceptional light absorption, and advantageous recycling performance are crucial attributes of semiconductor photocatalyst for wastewater purification. Herein, based on in-situ reaction, close-contact S-scheme bismuth chromate/bismuth oxide/ferroferric oxide@porous carbon microspheres (Cr2Bi3O11-Bi2O3/Fe3O4@PCs) (F-CBFP) was fabricated using alginates as precursor. Due to the abundance of functional groups on the porous carbon (PCs), Bi2O3 and Cr2Bi3O11 nanoparticles (NPs) are in situ deposited onto the highly conductive 3D magnetic porous Fe3O4@PCs microsphere surface, which not only form tight interfacial contacts and reduces interfacial potential barriers but also prevent agglomeration or shedding of the NPs during photocatalytic reactions. Moreover, density functional theory (DFT) calculations further confirm that the formation of a robust built-in electric field (BIEF) within F-CBFP prompts photo-induced electrons in the conduction band (CB) of Bi2O3 to combine with holes in the valence band (VB) of Cr2Bi3O11, effectively constructing a S-scheme heterojunction system. Also, Fe3O4 can act as a Fenton catalyst, activating the H2O2 generated by Cr2Bi3O11 under illumination. In wastewater treatment, the obtained F-CBFP shows remarkable photo-Fenton degradation (towards methyl orange (97.8 %, 60 min) and tetracycline hydrochloride (95.3 %, 100 min)) and disinfection performance (100 % E. coli inactivation), and exceptional cyclic stability.

2.
Environ Sci Pollut Res Int ; 31(10): 15091-15104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286930

RESUMO

The development of composite photocatalysts with high charge transfer efficiency, great visible light absorption, and quick recovery has aroused the interest of many researchers. Herein, based on the hydrothermal assisted vacuum freeze drying method, CdS, Fe3O4, and N-TiO2 were, respectively, fixed in the inner, middle, and outer layers of nitrogen-doped graphene aerogel for preparation of the site-specific magnetic porous Z-scheme CdS/Fe3O4@N-doped graphene aerogel microtube/N-doped TiO2 (CdS/Fe3O4@NGAM/N-TiO2) photocatalyst. For the composite, Fe3O4@NGAM carrier with porous and tubular structure not only helps the recycle and reactants/productions mass transport in the photocatalytic process but also ensures the well-steered transfer of electrons and holes from CdS and N-TiO2 in the Z-type heterojunction system, greatly improving the separation of photogenerated carriers. Besides, Fe3O4 can also work as a Fenton catalyst to activate hydrogen peroxide which is generated in situ by CdS. Thus, the CdS/Fe3O4@NGAM/N-TiO2 composite presents excellent degradation efficiencies towards methyl orange ((MO) 98% removal rate within 50 min), bisphenol A ((BPA) 96% removal rate within 50 min), tetracycline hydrochloride ((TCH) 96% removal rate within 120 min) and strong stabilities after 6 cycles. The free radical removal experiments show that ·O2- and ·OH are the main active substances of catalysis, which further confirms the synergistic effect of photocatalysis and Fenton catalysis.


Assuntos
Grafite , Grafite/química , Porosidade , Peróxido de Hidrogênio/química , Catálise , Fenômenos Magnéticos
3.
Chemosphere ; 328: 138553, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004820

RESUMO

The coaxial electrospinning method for preparation of g-C3N4/polyacrylonitrile (PAN)/polyaniline (PANI)@LaFeO3 cable fiber membrane (PC@PL) was designed for adsorption-filtration-photodegradation of pollutants. A series of characterization results show that LaFeO3 and g-C3N4 nanoparticles (NPs) are respectively loaded in the inner and outer layers of PAN/PANI composite fibers to construct the site-specific Z-type heterojunction system with spatially separated morphologies. The PANI in cable not only possesses abundant exposed amino/imino functional groups for adsorption of contaminant molecules but also due to the excellent electrical conductivity works as a redox medium for collecting and consuming the electrons and holes from LaFeO3 and g-C3N4, which can efficiently promote photo-generated charge carriers separation and improve the catalytic performance. Further investigations demonstrate that as a photo-Fenton catalyst LaFeO3 in PC@PL catalyzes/activates the H2O2 generated in situ by LaFeO3/g-C3N4, further enhancing the decontamination efficiency of the PC@PL. The porous, hydrophilic, antifouling, flexible and reusable properties of the PC@PL membrane significantly enhance the mass transfer efficiency of reactants by filtration effect and increase the amount of dissolved oxygen, thus producing massive •OH for degradation of pollutants, which maintains the water flux (1184 L m-2. h-1 (LMH)) and the rejection rate (98.5%). Profiting from its unique synergistic effect of adsorption, photo-Fenton and filtration, PC@PL exhibits wonderful self-cleaning performance and distinguished removal rate for methylene blue (97.0%), methyl violet (94.3%), ciprofloxacin (87.6%) and acetamiprid (88.9%) within 75 min, disinfection (100% Escherichia coli (E. coli) and 80% Staphylococcus aureus (S.aureus) inactivation)) and excellent cycle stability.


Assuntos
Nanofibras , Escherichia coli , Peróxido de Hidrogênio
4.
J Colloid Interface Sci ; 644: 29-41, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094470

RESUMO

A novel MoS2/polyaniline (PANI)/polyacrylonitrile (PAN)@BiFeO3 bilayer hollow nanofiber membrane (PPBM-H) was successfully synthesized by coaxial electrospinning technique. In the nanofiber, BiFeO3 nanoparticles (NPs) and MoS2 nanosheets (NSs) were loaded in the middle and outer layers of the PANI/PAN composites, respectively, which constructs a type II heterojunction with spatially separated microtopography, thus significantly improving the charge separation in photocatalysis. Moreover, the hollow structure and the vast number of exposed groups on the surface of PPBM-H help to improve the mass transfer efficiency and pollutant adsorption performance in wastewater treatment. In addition, PPBM-H can generate H2O2 by in-situ activation of BiFeO3/MoS2 for photo-Fenton catalysis, enabling Fe3+ and Fe2+ recycling. Also, PPBM-H can produce piezoelectric polarisation under ultrasonic excitation, which can further enhance the efficiency of electron/hole separation and transfer, and induce the generation of active free radicals. Owing to its wonderful self-cleaning effect, the PPBM-H has good mechanical strength (2.95 Mpa), hydrophilicity (11.6°), water flux (1248 L·m-2·h-1), BSA rejection (98.8 %), and exhibits distinguished photocatalytic filtration efficiencies (99.5 % tetracycline hydrochloride (TCH) and 99.9 % methyl orange (MO) within 60 min), piezo-photocatalysis (99.2 % TCH within 2 h), disinfection performance for Escherichia coli (E. coli) (100 %, within 60 min).

5.
Biosens Bioelectron ; 209: 114262, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429772

RESUMO

A novel, portable, and smartphone-based molecularly imprinted polymer electrochemiluminescence (MIP-ECL) sensing platform was constructed for sensitive and selective determination of furosemide (FSM). In this platform, MoSe2 nanoparticles/starch-derived biomass carbon (MoSe2/BC) nanocomposites as imprinted material, lucigenin (Luc) as the energy donor, CdS quantum dots (CdS QDs) were used as the luminophore (energy acceptor), and molecularly imprinted polymer (MIP) as the specificity recognition element to construct a MIP-ECL sensing system based on electroluminescence resonance energy transfer (ECL-RET) mechanism, which enhanced the sensitivity and the specificity of this system. Imprinted materials were characterized by SEM, TEM, XRD, FT-IR, etc. and the recognition performance of MIP was characterized using CV, EIS, and ECL methods. The elution and re-sorption of template molecules can be used as a switch to control ECL based on the signal that can be quenched by FSM. Interestingly, deep learning based on convolutional neural networks realizes batch processing of ECL signals. Additionally, this developed MIP-ECL method was established by using the traditional ECL analyzer detector for the assay of FSM with a detection limit of 4 nM in the range of 0.010 µM-100 µM. Besides, the consumer smartphone sensing platform based on deep learning showed an outstanding linear response between the R-value of the picture and the concentration of furosemide in the range of 1-70 µM with a detection limit of 0.25 µΜ, which is much lower than that the reported for other detection methods. More importantly, due to the transferability of deep learning, the smartphone-based MIP-ECL systems can facilitate the real-time monitoring of biochemical analytes in multiple fields.


Assuntos
Técnicas Biossensoriais , Aprendizado Profundo , Impressão Molecular , Pontos Quânticos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Furosemida , Limite de Detecção , Medições Luminescentes/métodos , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Pontos Quânticos/química , Smartphone , Espectroscopia de Infravermelho com Transformada de Fourier
6.
J Hazard Mater ; 402: 123774, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254785

RESUMO

Polyimide-laser-engraved porous graphene (LEPG) are hopeful electrode modification materials for flexible electrochemical sensing based on its high-efficiency preparation and low cost. Herein, a flexible, multi-patterned, and miniaturized electrode was fabricated via a simple and novel direct laser engraving. 3D LEPG with porous network structure can selective decorated with Pt nanoparticles (Pt NPs) by in situ electrochemical depositions (Pt-LEPG) as sensitively H2O2 sensors with a wide range of linear (0.01-29 nM) and high sensitivity (575.75 µA mM-1 cm-2). Subsequently, a glucose biosensor was successfully constructed through immobilized glucose oxidases (GOD) onto Pt-LEPG electrode. New-designed GOD/Pt-LEPG glucose sensor exhibited a noteworthy lower limit of detection (0.3 µM, S/N = 3) and high sensitivity (241.82 µA mM-1 cm-2), as much a wide-range of linear (0.01-31.5 mM) at near-neutral pH conditions, enabling detect glucose in real human serum specimens with satisfactory results. Predictably, these outstanding performance sensors have great potential in terms of flexible and wearable electronics.


Assuntos
Técnicas Biossensoriais , Grafite , Técnicas Eletroquímicas , Eletrodos , Gravuras e Gravação , Glucose , Humanos , Peróxido de Hidrogênio , Lasers , Platina , Porosidade
7.
Mikrochim Acta ; 186(12): 795, 2019 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-31734752

RESUMO

A glassy carbon electrode (GCE) was modified with nitrogen-enriched carbon frameworks decorated with palladium nanoparticles (Pd@NCF/GCEs). The modified GCE is shown to be a viable tool for determination of uric acid (UA) and dopamine (DA) in the presence of ascorbic acid (AA). The Pd@NCF was fabricated though one-step pyrolysis and characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy and nitrogen-adsorption/desorption analysis. The Pd@NCF/GCE was characterized by differential pulse voltammetry (DPV). Both UA and DA have pronounced oxidation peaks (at 360 mV for UA and 180 mV for DA, all vs. Ag/AgCl) in the presence of AA. Response is linear in the 0.5-100 µM UA concentration range and in the 0.5-230 µM DA concentration range. The detection limits are 76 and 107 nM, respectively (at S/N = 3). This electrode is stable, reproducible and highly selective. It was used for UA and DA determination in spiked serum samples. Graphical abstractSchematic representation of nitrogen-enriched carbon frameworks decorated with palladium nanoparticles co-modified glassy carbon electrode for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid.


Assuntos
Ácido Ascórbico/química , Carbono/química , Dopamina/sangue , Nanopartículas Metálicas/química , Ácido Úrico/sangue , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Nanocompostos/química , Nitrogênio/química , Paládio/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...