Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Talanta ; 278: 126457, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38917550

RESUMO

MicroRNAs (miRNAs) play pivotal roles in gene regulation and their dysregulation is implicated in various diseases, including cancer. Current methods for miRNA analysis often involve complex procedures and high costs, limiting their clinical utility. Therefore, there is a critical need for the development of simpler and more cost-effective miRNA detection techniques to enable early disease diagnosis. In this study, we introduce a novel one-enzyme for miRNA one-step detection method using Taq DNA polymerase, termed OSMOS-qPCR. We optimized the PCR buffer, PCR program, Taq DNA Polymerase concentrations and reverse PCR primer concentrations, resulted in a wide linear range from 100 fM to 0.001 fM (R2 > 0.98 for each miRNA), the detection limit for OSMOS-qPCR was 0.0025 fM. Furthermore, OSMOS-qPCR demonstrates excellent specificity to differentiation of less than 0.1 % nonspecific signal. Finally, we demonstrated the robust amplification efficiency, enabling the detection of trace amounts of cell-free miRNA in serum samples, and the excellent discrimination ability between gastrointestinal cancers and control subjects (AUC value = 1.0) if combined two miRNAs. The development of OSMOS-qPCR offering a simpler, cost-effective, and efficient detection method, has the potential to be non-invasive strategy for early detection of gastrointestinal cancers.

2.
Exp Cell Res ; 439(2): 114099, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38802035

RESUMO

Gastric cancer is histologically classified into the intestinal subtype, which forms tubular structures, and the aggressive diffuse subtype, characterized by rapid invasion and poor prognosis. The variety and quantity of miRNA isoforms between different histological subtypes of gastric cancer were unknown. Through systematic filtering, we found that more diverse miR-30a-5p isoforms was present in the diffuse subtype of gastric cancer, and was associated with patients' worse survival independent of tumor stage based on the TCGA miRNA-seq data. Among all nine isoforms of miR-30a-5p, miR-30a-5p -1|1 was more abundant than the archetype of miR-30a-5p. Higher expression of miR-30a-5p -1|1 was observed in patients with advanced tumor stage and poor survival. Furthermore, miR-30a-5p -1|1 could promote the metastasis of gastric cancer cells both in vitro and in vivo by down-regulating TMEM66. In clinical samples, decreased expression of TMEM66 was characteristic of gastric cancer, and the low level of TMEM66 correlated with deceased CD8 positive cells in the tumor microenvironment probably due to decreased cytokines production. In conclusion, the variety of miR-30a-5p isoforms correlates with worse survival in gastric cancer patients. Moreover, miR-30a-5p -1|1 could promote gastric cancer metastasis by inhibiting TMEM66 and the infiltration of intratumoral CD8 positive cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana , MicroRNAs , Neoplasias Gástricas , Linfócitos T Citotóxicos , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38626734

RESUMO

OBJECTIVE: This study aimed to characterize the computed tomography (CT) enterography features of the small bowel gastrointestinal stromal tumors (GIST) and to determine the association with pathological aggressiveness. METHODS: Computed tomography enterography images of 30 patients with the histologically confirmed small bowel GIST were retrospectively enrolled. Tumor size, location, border, growth pattern, enhancement pattern, necrosis, calcification, ulceration, internal air, nodal metastasis, liver metastasis, peritoneal metastasis, and draining vein were evaluated. Relationships between imaging features and pathological aggressiveness were analyzed using χ2 test or Fisher exact test. Correlations among CT features were analyzed using Spearman correlation analysis. RESULTS: There were significant differences in tumor size between different risk levels (F = 8.388, P < 0.001). There were statistically significant differences in the 5 imaging manifestations of necrosis, ulcer, tumor boundary, drainage vein, and intratumoral gas (P < 0.05). There was a significant negative correlation between tumor size and enhancement type as well as clear tumor boundary. There was a significant positive correlation between tumor size and necrosis, ulcer, drainage vein, intratumoral gas, liver metastasis, and peritoneal metastasis. CONCLUSIONS: Some CT enterography imaging features might be useful in the determination of the pathological aggressiveness in the patients with small bowel GIST.

4.
Biosens Bioelectron ; 247: 115927, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113694

RESUMO

MicroRNAs (miRNAs) are increasingly recognized as promising biomarkers for early disease diagnosis and prognosis. Therefore, the need for rapid, robust methods for multiplex miRNA detection in biological research and clinical diagnosis is crucial. This study introduces a novel multiplex miRNA detection method, SMOS-qPCR (Sensitive and Multiplexed One-Step RT-qPCR). The method integrates multiplexed reverse transcription and TaqMan-based qPCR into a single tube, employing a one-step operation on a real-time PCR system. We investigated the effect of 3' end phosphorylation of the Linker, Linker concentration and probe concentration on the SMOS-qPCR, resulted in a wide linear range from 1 fM to 0.1 zM (R2 ≥ 0.99 for each miRNA), surpassing the capabilities of stem-loop RT-qPCR and SYBR Green One-step RT-qPCR. The method showed excellent performance in distinguishing mature miRNA from miRNA precursor, and successfully detected four miRNAs in a single tube without cross-interference. Its high specificity enables precise differentiation of less than 1% nonspecific signal. Finally, we demonstrated the effectiveness of the SMOS-qPCR system in detecting circulating miRNAs in serum samples, distinguishing between esophageal cancers and health individuals with high AUC values (>0.940). In conclusion, the proposed SMOS-qPCR system offers a straightforward and promising approach for miRNA profiling in future clinical applications.


Assuntos
Técnicas Biossensoriais , MicroRNA Circulante , Neoplasias Esofágicas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética
5.
Neoplasia ; 46: 100941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918207

RESUMO

BACKGROUND: Target gastrointestinal cancers (GICs), encompassing esophageal cancer (EC), gastric cancer (GC), and colorectal cancer (CRC), originate within a single readily accessible luminal organ system and are diagnosable using endoscopy. However, endoscopy is an invasive procedure with low compliance and no plasma-based DNA methylation assay for the early detection of GICs. METHODS: Nine potential DNA methylation markers were identified and evaluated in tissue (n=60) and plasma (n=155) cohorts to select the most suitable markers. A training cohort (n=244) and a validation cohort (n=199), including GICs patients, benign tumors, gastrointestinal polyps, and controls, were enrolled to develop and validate a DNA methylation panel. An independent prospective cohort (n=158) was used to validate the panel's performance and compare it with blood protein tumor markers. RESULTS: Six out of nine candidate methylation markers with excellent discrimination abilities in both tissue and plasma cohorts were selected for the DNA methylation panel. The panel demonstrated high AUC values of 0.937 (EC), 0.968 (GC), and 0.987 (CRC) in training cohort, and achieved AUC values of 0.921 (EC), 0.921 (GC), and 0.959 (CRC) in validation cohort. Notably, it achieved impressive AUC values of 0.971 and 0.843 for identifying stage I GICs in the training and validation cohorts, respectively. In the prospective cohort, the six-marker panel showed comparable AUC values to CEA, AFP, and CA19-9 (0.935, 0.769, 0.663, and 0.668, respectively). CONCLUSION: This study successfully developed and validated a novel, robust, sensitive, and specific plasma-based DNA methylation panel, offering a promising strategy for the early detection of GICs.


Assuntos
Neoplasias Colorretais , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Metilação de DNA , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Biomarcadores Tumorais/genética , Estudos Prospectivos , Neoplasias Esofágicas/genética , Neoplasias Gástricas/genética
6.
Front Genet ; 14: 1234645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560387

RESUMO

Background: Gastric cancer (GC) is one of the most common malignancies, with a low 5-year survival rate. However, if diagnosed at an early stage, it can be cured by endoscopic treatment and has a good prognosis. While gastrointestinal X-ray and upper endoscopy are used as national GC screening methods in some GC high-risk countries, such as Japan and Korea, their radiation exposure, invasiveness, and high cost suggest that they are not the optimal tools for early detection of GC in many countries. Therefore, a cost-effective, and highly accurate method for GC early detection is urgently needed in clinical settings. DNA methylation plays a key role in cancer progression and metastasis and has been demonstrated as a promising marker for cancer early detection. Aims and methods: This review provides a comprehensive overview of the current status of DNA methylation markers associated with GC, the assays developed for GC early detection, challenges in methylation marker discovery and application, and the future prospects of utilizing methylation markers for early detection of GC. Through our analysis, we found that the currently reported DNA methylation markers related to GC are mainly in the early discovery stage. Most of them have only been evaluated in tissue samples. The majority of non-invasive assays developed based on blood lack standardized sampling protocols, pre-analytical procedures, and multicenter validation, and they exhibit insufficient sensitivity for early-stage GC detection. Meanwhile, the reported GC DNA methylation markers are generally considered pan-cancer markers. Conclusion: Therefore, future endeavors should focus on identifying additional methylation markers specific to GC and establishing non-invasive diagnostic assays that rely on these markers. These assays should undergo multicenter, large-scale prospective validation in diverse populations.

7.
BMC Gastroenterol ; 22(1): 428, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203138

RESUMO

BACKGROUND: ColoDefense1.0 assay has demonstrated its excellent sensitivity and specificity for early detection of colorectal cancer (CRC) by detecting the methylation levels of SDC2 and SEPT9, while exhibited limitations on relatively large sample capacity required and limited detection throughput by applying triplicate PCR reactions for each sample. In this study, ColoDefense1.0 was simplified and optimized into ColoDefense2.0 in a single PCR reaction. METHODS: A total 529 stool specimens were collected, and 244 CRC patients, 34 patients with advanced adenomas (AA), 64 with small polyps (SP) and 187 control subjects were divided in training and validation cohorts. Methylation levels of SEPT9 and SDC2 were examined by qPCR reactions in triplicate or single. RESULTS: The stool DNA quantity stored in preservative buffer at 37 °C up to 7 days exhibited no significant decrease. In the training cohort, when the number of replicates reduced from 3 to 1, the overall performance of ColoDefense2.0 was identical to that of ColoDefense1.0, showing sensitivities of 71.4% for AA and 90.8% for all stage CRC with a specificity of 92.9%. In the validation cohort, sensitivities of SP, AA and CRC using ColoDefense2.0 were 25.0%, 55.0% and 88.2%, increased from 14.1% (20.3%), 40.0% (40.0%) and 79.4% (67.6%) using SDC2 (SEPT9) alone; along with an overall specificity of 90.2%, decreased from 94.1% (95.1%) using SDC2 (SEPT9) alone. CONCLUSION: The simplified ColoDefense test maintained the overall performance while reduced the number of PCR reactions to 1/3, and provided an effective and convenient tool to detect early CRC and precancerous lesions and potentially improve the compliance of screening.


Assuntos
Neoplasias Colorretais , Sindecana-2 , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA , Metilação de DNA , Detecção Precoce de Câncer , Humanos , Sensibilidade e Especificidade , Sindecana-2/genética
8.
Biochem Genet ; 60(1): 382-394, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34235595

RESUMO

Acute pancreatitis (AP) causes intestinal barrier damage, resulting in systemic inflammatory response syndrome (SIRS) or multiple organ dysfunction syndrome (MODS), which are important factors affecting AP severity and mortality. Here, we studied the mechanism of miR-122 in regulating intestinal barrier function in AP. AP rat model was constructed via intraperitoneal injection of ketamine, and primary intestinal epithelial cells were isolated from rats for in vitro studies. HE staining was used to assess pathological alterations of pancreas and intestines tissues. Inflammatory factors were detected by ELISA assay. qRT-PCR and WB were used to detect the expressions of miR-122 and occluding, respectively. Then dual-luciferase reporter assay, intestinal permeability test, and cell permeability were performed in vivo and in vitro to probe the molecular mechanism of miR-122 in regulating intestinal barrier function in AP. The expression of miR-122 was upregulated in AP rats, while the expression of occludin was downregulated, and the intestinal permeability was increased in AP rats and primary intestinal epithelial cells isolated from rats. Inhibition of miR-122 regulated intestinal barrier function through mediating occludin expression. miR-122 regulated intestinal barrier function to affect AP through mediating occludin expression in vivo. These results provided evidence that miR-122 overexpression impaired intestinal barrier function via regulation of occludin expression, thus promoting AP progression.


Assuntos
MicroRNAs , Pancreatite , Doença Aguda , Animais , MicroRNAs/genética , Ocludina/genética , Pancreatite/genética , Permeabilidade , Ratos
9.
Front Oncol ; 11: 652283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046348

RESUMO

It has been shown that aberrant activation of the Hedgehog (Hh) and nuclear factor-kappa B (NF-κB) signaling pathways plays an important role in the pancreatic carcinogenesis, and KRAS mutation is a hallmark of pancreatic ductal adenocarcinoma (PDAC). Until now, the role of KRAS mutation in the context of crosstalk between Hh and NF-κB signaling pathways in PDAC has not been investigated. This study was to determine whether the crosstalk between the Hh and NF-κB pathways is dependent on KRAS mutation in PDAC. The correlation between Gli1, Shh, NF-κB p65 expression and KRAS mutation in PDAC tissues was firstly examined by immunohistochemistry. Next, Western blotting, qPCR, and immunofluorescence were conducted to examine the biological effects of interleukin-1ß (IL-1ß) and tumor necrosis factor-alpha (TNF-α) as NF-κB signaling agonists, Shh as an Hh ligand alone or in combination with KRAS small interfering RNA (si-KRAS) in KRAS-mutant PDAC cells (MT-KRAS; SW1990 and Panc-1), wild-type KRAS PDAC cells (WT-KRAS; BxPC-3) and mutant KRAS knock-in BxPC-3 cells in vitro as well as tumor growth in vivo. KRAS mutation-dependent crosstalk between Hh and NF-κB in PDAC cells was further assessed by Ras activity and luciferase reporter assays. The aberrant Hh and NF-κB pathway activation was found in PDAC tissues with KRAS mutation. The same findings were confirmed in MT-KRAS PDAC cells and MT-KRAS knock-in BxPC-3 cells, whereas this activation was not observed in WT-KRAS PDAC cells. However, the activation was significantly down-regulated by KRAS silencing in MT-KRAS PDAC cells. Furthermore, MT-KRAS cancer cell proliferation and survival in vitro and tumor growth after inoculation with MT-KRAS cells in vivo were promoted by NF-κB and Hh signaling activation. The pivotal factor for co-activation of NF-κB and Hh signaling is MT-KRAS protein upregulation, showing that positive crosstalk between Hh and NF-κB pathways is dependent upon KRAS mutation in PDAC.

10.
J Biochem Mol Toxicol ; 35(1): e22621, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894642

RESUMO

Gastric cancer is one of the most common causes of cancer-related death worldwide. Immunotherapy via programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) blockade has shown benefits for gastric cancer. Epigenetic DNA methylation critically regulates cancer immune checkpoints. We investigated how the natural compound oleanolic acid (OA) affected PD-L1 expression in gastric cancer cells. Interleukin-1ß (IL-1ß) at 20 ng/mL was used to stimulate human gastric cancer MKN-45 cells. IL-1ß significantly increased PD-L1 expression, which was abolished by OA. Next, OA-treated MKN-45 cells were co-cultured with activated and PD-1-overexpressing Jurkat T cells. OA restored IL-2 levels in the co-culture system and increased T cell killing toward MKN-45 cells. Overexpression of PD-L1 eliminated OA-enhanced T cell killing capacity; however, PD-1 blocking antibody abrogated the cytotoxicity of T cells. Moreover, OA abolished IL-1ß-increased DNA demethylase activity in MKN-45 cells. DNA methyltransferase inhibitor 5-azacytidine rescued OA-reduced PD-L1 expression; whereas DNA demethylation inhibitor gemcitabine inhibited PD-L1 expression, and, in combination with OA, provided more potent inhibitory effects. Furthermore, OA selectively reduced the expression of DNA demethylase TET3 in IL-1ß-treated MKN-45 cells, and overexpression of TET3 restored OA-reduced PD-L1 expression. Finally, OA disrupted nuclear factor κB (NF-κB) signaling IL-1ß-treated MKN-45 cells, and overexpression of NF-κB restored OA downregulation of TET3 and PD-L1. The cytotoxicity of T cells toward MKN-45 cells was also weakened by NF-κB overexpression. Altogether, OA blocked the IL-1ß/NF-κB/TET3 axis in gastric cancer cells, leading to DNA hypomethylation and downregulation of PD-L1. Our discoveries suggested OA as an epigenetic modulator for immunotherapy or an adjuvant therapy against gastric cancer.


Assuntos
Antígeno B7-H1/biossíntese , Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Ácido Oleanólico/farmacologia , Neoplasias Gástricas/metabolismo , Humanos , Células Jurkat , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...