Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(17): 4751-4769.e25, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39089252

RESUMO

The Duffy antigen receptor is a seven-transmembrane (7TM) protein expressed primarily at the surface of red blood cells and displays strikingly promiscuous binding to multiple inflammatory and homeostatic chemokines. It serves as the basis of the Duffy blood group system in humans and also acts as the primary attachment site for malarial parasite Plasmodium vivax and pore-forming toxins secreted by Staphylococcus aureus. Here, we comprehensively profile transducer coupling of this receptor, discover potential non-canonical signaling pathways, and determine the cryoelectron microscopy (cryo-EM) structure in complex with the chemokine CCL7. The structure reveals a distinct binding mode of chemokines, as reflected by relatively superficial binding and a partially formed orthosteric binding pocket. We also observe a dramatic shortening of TM5 and 6 on the intracellular side, which precludes the formation of the docking site for canonical signal transducers, thereby providing a possible explanation for the distinct pharmacological and functional phenotype of this receptor.


Assuntos
Microscopia Crioeletrônica , Sistema do Grupo Sanguíneo Duffy , Receptores de Superfície Celular , Humanos , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/química , Sistema do Grupo Sanguíneo Duffy/metabolismo , Sistema do Grupo Sanguíneo Duffy/química , Transdução de Sinais , Sítios de Ligação , Quimiocinas/metabolismo , Quimiocinas/química , Ligação Proteica
2.
Elife ; 122023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855711

RESUMO

The vasopressin type 2 receptor (V2R) is an essential G protein-coupled receptor (GPCR) in renal regulation of water homeostasis. Upon stimulation, the V2R activates Gαs and Gαq/11, which is followed by robust recruitment of ß-arrestins and receptor internalization into endosomes. Unlike canonical GPCR signaling, the ß-arrestin association with the V2R does not terminate Gαs activation, and thus, Gαs-mediated signaling is sustained while the receptor is internalized. Here, we demonstrate that this V2R ability to co-interact with G protein/ß-arrestin and promote endosomal G protein signaling is not restricted to Gαs, but also involves Gαq/11. Furthermore, our data imply that ß-arrestins potentiate Gαs/Gαq/11 activation at endosomes rather than terminating their signaling. Surprisingly, we found that the V2R internalizes and promote endosomal G protein activation independent of ß-arrestins to a minor degree. These new observations challenge the current model of endosomal GPCR signaling and suggest that this event can occur in both ß-arrestin-dependent and -independent manners.


Assuntos
Arrestinas , Receptores de Vasopressinas , beta-Arrestinas/metabolismo , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , Endossomos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Vasopressinas/metabolismo
3.
Br J Pharmacol ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740273

RESUMO

G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors, and are involved in the transmission of a variety of extracellular stimuli such as hormones, neurotransmitters, light and odorants into intracellular responses. They regulate every aspect of physiology and, for this reason, about one third of all marketed drugs target these receptors. Classically, upon binding to their agonist, GPCRs are thought to activate G-proteins from the plasma membrane and to stop signalling by subsequent desensitisation and endocytosis. However, accumulating evidence indicates that, upon internalisation, some GPCRs can continue to activate G-proteins in endosomes. Importantly, this signalling from endomembranes mediates alternative cellular responses other than signalling at the plasma membrane. Endosomal G-protein signalling and its physiological relevance have been abundantly documented for Gαs - and Gαi -coupled receptors. Recently, some Gαq -coupled receptors have been reported to activate Gαq on endosomes and mediate important cellular processes. However, several questions relative to the series of cellular events required to translate endosomal Gαq activation into cellular responses remain unanswered and constitute a new conundrum. How are these responses in endosomes mediated in the quasi absence of the substrate for the canonical Gαq -activated effector? Is there another effector? Is there another substrate? If so, how does this alternative endosomal effector or substrate produce a downstream signal? This review aims to unravel and discuss these important questions, and proposes possible routes of investigation.

4.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37034816

RESUMO

The vasopressin type 2 receptor (V2R) is an essential GPCR in renal regulation of water homeostasis. Upon stimulation, the V2R activates Gαs and Gαq/11, which is followed by robust recruitment of ß-arrestins and receptor internalization into endosomes. Unlike canonical GPCR signaling, the ß-arrestin association with the V2R does not terminate Gαs activation, and thus, Gαs-mediated signaling is sustained while the receptor is internalized. Here, we demonstrate that this V2R ability to co-interact with G protein/ß-arrestin and promote endosomal G protein signaling is not restricted to Gαs, but also involves Gαq/11. Furthermore, our data implies that ß-arrestins potentiate Gαs/Gαq/11 activation at endosomes rather than terminating their signaling. Surprisingly, we found that the V2R internalizes and promote endosomal G protein activation independent of ß-arrestins to a minor degree. These new observations challenge the current model of endosomal GPCR signaling and suggest that this event can occur in both ß-arrestin-dependent and -independent manners.

5.
ACS Pharmacol Transl Sci ; 5(2): 89-101, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35846981

RESUMO

G protein-coupled receptors (GPCRs) can engage distinct subsets of signaling pathways, but the structural determinants of this functional selectivity remain elusive. The naturally occurring genetic variants of GPCRs, selectively affecting different pathways, offer an opportunity to explore this phenomenon. We previously identified 40 coding variants of the MTNR1B gene encoding the melatonin MT2 receptor (MT2). These mutations differently impact the ß-arrestin 2 recruitment, ERK activation, cAMP production, and Gαi1 and Gαz activation. In this study, we combined functional clustering and structural modeling to delineate the molecular features controlling the MT2 functional selectivity. Using non-negative matrix factorization, we analyzed the signaling signatures of the 40 MT2 variants yielding eight clusters defined by unique signaling features and localized in distinct domains of MT2. Using computational homology modeling, we describe how specific mutations can selectively affect the subsets of signaling pathways and offer a proof of principle that natural variants can be used to explore and understand the GPCR functional selectivity.

6.
Cell Rep ; 34(12): 108862, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761344

RESUMO

The Melanocortin-4 Receptor (MC4R) plays a pivotal role in energy homeostasis. We used human MC4R mutations associated with an increased or decreased risk of obesity to dissect mechanisms that regulate MC4R function. Most obesity-associated mutations impair trafficking to the plasma membrane (PM), whereas obesity-protecting mutations either accelerate recycling to the PM or decrease internalization, resulting in enhanced signaling. MC4R mutations that do not affect canonical Gαs protein-mediated signaling, previously considered to be non-pathogenic, nonetheless disrupt agonist-induced internalization, ß-arrestin recruitment, and/or coupling to Gαs, establishing their causal role in severe obesity. Structural mapping reveals ligand-accessible sites by which MC4R couples to effectors and residues involved in the homodimerization of MC4R, which is disrupted by multiple obesity-associated mutations. Human genetic studies reveal that endocytosis, intracellular trafficking, and homodimerization regulate MC4R function to a level that is physiologically relevant, supporting the development of chaperones, agonists, and allosteric modulators of MC4R for weight loss therapy.


Assuntos
Peso Corporal/genética , Endocitose , Variação Genética , Multimerização Proteica , Receptor Tipo 4 de Melanocortina/genética , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação , Receptor Tipo 4 de Melanocortina/química , Transdução de Sinais , beta-Arrestinas/metabolismo
7.
Biochem Soc Trans ; 48(4): 1493-1504, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32779712

RESUMO

US28 is a viral G protein-coupled receptor (GPCR) encoded by the human cytomegalovirus (HCMV). This receptor, expressed both during lytic replication and viral latency, is required for latency. US28 is binding to a wide variety of chemokines but also exhibits a particularly high constitutive activity robustly modulating a wide network of cellular pathways altering the host cell environment to benefit HCMV infection. Several studies suggest that US28-mediated signalling may contribute to cancer progression. In this review, we discuss the unique structural characteristics that US28 acquired through evolution that confer a robust constitutive activity to this viral receptor. We also describe the wide downstream signalling network activated by this constitutive activation of US28 and discuss how these signalling pathways may promote and support important cellular aspects of cancer.


Assuntos
Citomegalovirus/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Proteínas do Envelope Viral/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Conformação Proteica , Proteínas do Envelope Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...