Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Digit Biomark ; 6(3): 83-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466953

RESUMO

Background: The proliferation and increasing maturity of biometric monitoring technologies allow clinical investigators to measure the health status of trial participants in a more holistic manner, especially outside of traditional clinical settings. This includes capturing meaningful aspects of health in daily living and a more granular and objective manner compared to traditional tools in clinical settings. Summary: Within multidisciplinary teams, statisticians and data scientists are increasingly involved in clinical trials that incorporate digital clinical measures. They are called upon to provide input into trial planning, generation of evidence on the clinical validity of novel clinical measures, and evaluation of the adequacy of existing evidence. Analysis objectives related to demonstrating clinical validity of novel clinical measures differ from typical objectives related to demonstrating safety and efficacy of therapeutic interventions using established measures which statisticians are most familiar with. Key Messages: This paper discusses key considerations for generating evidence for clinical validity through the lens of the type and intended use of a clinical measure. This paper also briefly discusses the regulatory pathways through which clinical validity evidence may be reviewed and highlights challenges that investigators may encounter while dealing with data from biometric monitoring technologies.

2.
Lasers Surg Med ; 48(8): 782-789, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27389389

RESUMO

BACKGROUND AND OBJECTIVE: The development and feasibility of a novel nanocrystalline yttria-stabilized-zirconia (nc-YSZ) cranial implant has been recently established. The purpose of what we now call "window to the brain (WttB)" implant (or platform), is to improve patient care by providing a technique for delivery and/or collection of light into/from the brain, on demand, over large areas, and on a chronically recurring basis without the need for repeated craniotomies. WttB holds the transformative potential for enhancing light-based diagnosis and treatment of a wide variety of brain pathologies including cerebral edema, traumatic brain injury, stroke, glioma, and neurodegenerative diseases. However, bacterial adhesion to the cranial implant is the leading factor for biofilm formation (fouling), infection, and treatment failure. Escherichia coli (E. coli), in particular, is the most common isolate in gram-negative bacillary meningitis after cranial surgery or trauma. The transparency of our WttB implant may provide a unique opportunity for non-invasive treatment of bacterial infection under the implant using medical lasers. STUDY DESIGN/MATERIALS AND METHODS: A drop of a diluted overnight culture of BL21-293 E. coli expressing luciferase was seeded between the nc-YSZ implant and the agar plate. This was followed by immediate irradiation with selected laser. After each laser treatment the nc-YSZ was removed, and cultures were incubated for 24 hours at 37 °C. The study examined continuous wave (CW) and pulsed wave (PW) modes of near-infrared (NIR) 810 nm laser wavelength with a power output ranging from 1 to 3 W. During irradiation, the temperature distribution of nc-YSZ surface was monitored using an infrared thermal camera. Relative luminescence unit (RLU) was used to evaluate the viability of bacteria after the NIR laser treatment. RESULTS: Analysis of RLU suggests that the viability of E. coli biofilm formation was reduced with NIR laser treatment when compared to the control group (P < 0.01) and loss of viability depends on both laser fluence and operation mode (CW or PW). The results demonstrate that while CW laser reduces the biofilm formation more than PW laser with the same power, the higher surface temperature of the implant generated by CW laser limits its medical efficacy. In contrast, with the right parameters, PW laser produces a more moderate photothermal effect which can be equally effective at controlling bacterial growth. CONCLUSIONS: Our results show that E. coli biofilm formation across the thickness of the nc-YSZ implant can be disrupted using NIR laser treatment. The results of this in vitro study suggest that using nc-YSZ as a cranial implant in vivo may also allow for locally selective, non-invasive, chronic treatment of bacterial layers (fouling) that might form under cranial implants, without causing adverse thermal damage to the underlying host tissue when appropriate laser parameters are used. Lasers Surg. Med. 48:782-789, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Biofilmes/efeitos da radiação , Escherichia coli/efeitos da radiação , Lasers , Nanopartículas/microbiologia , Procedimentos Neurocirúrgicos/instrumentação , Próteses e Implantes/microbiologia , Ítrio , Zircônio
3.
Nanomedicine ; 12(7): 1757-1763, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27133190

RESUMO

The long-range goal of the windows to the brain (WttB) is to improve patient care by providing a technique for delivery and/or collection of light into/from the brain, on demand, over large areas, and on a chronically-recurring basis without the need for repeated craniotomies. To evaluate the potential of nanocrystalline yttria-stabilized-zirconia (nc-YSZ) cranial implant for optical therapy and imaging, in vivo biocompatibility was studied using the dorsal window chamber model in comparison with control (no implant) and commercially available cranial implant materials (PEEK and PEKK). The host tissue response to implant was characterized by using transillumination and fluorescent microscopy to measure leukocyte adhesion, blood vessel diameter, blood flow rate, and vascular permeability over two weeks. The results indicated the lack of inflammatory reaction of the host tissue to nc-YSZ at the microscopic level, suggesting that nc-YSZ is a good alternative material for cranial implants.


Assuntos
Próteses e Implantes , Crânio , Ítrio , Zircônio , Adesão Celular , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanopartículas/química , Propriedades de Superfície , Titânio
4.
Lasers Surg Med ; 46(6): 488-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24863481

RESUMO

BACKGROUND AND OBJECTIVE: Optical clearing agents (OCAs) have shown promise for increasing the penetration depth of biomedical lasers by temporarily decreasing optical scattering within the skin. However, their translation to the clinic has been constrained by lack of practical means for effectively perfusing OCA within target tissues in vivo. The objective of this study was to address this limitation through combination of a variety of techniques to enhance OCA perfusion, including heating of OCA, microneedling and/or application of pneumatic pressure over the skin surface being treated (vacuum and/or positive pressure). While some of these techniques have been explored by others independently, the current study represents the first to explore their use together. STUDY DESIGN/MATERIALS AND METHODS: Propylene glycol (PG) OCA, either at room-temperature or heated to 45°C, was topically applied to hydrated, body temperature ex vivo porcine skin, in conjunction with various combinations of microneedling pre-treatment (0.2 mm length microneedles, performed prior to OCA application), vacuum pre-treatment (17-50 kPa, performed prior to OCA application), and positive pressure post-treatment (35-172 kPa, performed after OCA application). The effectiveness of OCA perfusion was characterized via measurements of transmittance, reduced scattering coefficient, and penetration depth at a number of medically-relevant laser wavelengths across the visible spectrum. RESULTS: Topical application of room-temperature (RT) PG led to an increase in transmittance across the visible spectrum of up to 21% relative to untreated skin. However, only modest increases were observed with addition of various combinations of microneedling pre-treatment, vacuum pre-treatment, and positive pressure post-treatment. Conversely, when heated PG was used in conjunction with these techniques, we observed significant increases in transmittance. Using an optimal PG perfusion enhancement protocol consisting of 45°C heated PG + microneedle pre-treatment + 35 kPa vacuum pre-treatment + 103 kPa positive pressure post-treatment, we observed up to 68% increase in transmittance relative to untreated skin, and up to 46% increase relative to topical RT PG application alone. Using the optimal PG perfusion enhancement protocol, we also observed up to 30% decrease in reduced scattering coefficient relative to untreated skin, and up to 20% decrease relative to topical RT PG alone. Finally, using the optimal protocol, we observed up to 25% increase in penetration depth relative to untreated skin, and up to 23% increase relative to topical RT PG alone. CONCLUSIONS: The combination of heated PG, microneedling pre-treatment, vacuum pre-treatment, and positive pressure-post treatment were observed to significantly enhance the perfusion of topically applied PG. Although further studies are required to evaluate the efficacy of combined perfusion enhancement techniques in vivo, the current results suggest promise for facilitating the translation of OCAs to the clinic.


Assuntos
Fármacos Dermatológicos/administração & dosagem , Lasers , Propilenoglicol/administração & dosagem , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Temperatura Alta , Agulhas , Pressão , Pele/efeitos da radiação , Absorção Cutânea , Suínos , Vácuo
5.
Nanomedicine ; 9(8): 1135-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23969102

RESUMO

Laser-based diagnostics and therapeutics show promise for many neurological disorders. However, the poor transparency of cranial bone (calvaria) limits the spatial resolution and interaction depth that can be achieved, thus constraining opportunity in this regard. Herein, we report preliminary results from efforts seeking to address this limitation through use of novel transparent cranial implants made from nanocrystalline yttria-stabilized zirconia (nc-YSZ). Using optical coherence tomography (OCT) imaging of underlying brain in an acute murine model, we show that signal strength is improved when imaging through nc-YSZ implants relative to native cranium. As such, this provides initial evidence supporting the feasibility of nc-YSZ as a transparent cranial implant material. Furthermore, it represents a crucial first step towards realization of an innovative new concept we are developing, which seeks to eventually provide a clinically-viable means for optically accessing the brain, on-demand, over large areas, and on a chronically-recurring basis, without need for repeated craniectomies. FROM THE CLINICAL EDITOR: In this study, transparent nanocrystalline yttria-stabilized-zirconia is used as an experimental "cranium prosthesis" material, enabling the replacement of segments of cranial bone with a material that allows for optical access to the brain on a recurrent basis using optical imaging methods such as OCT.


Assuntos
Substitutos Ósseos/química , Nanopartículas/química , Próteses e Implantes , Crânio/cirurgia , Ítrio/química , Zircônio/química , Animais , Luz , Camundongos , Imagem Óptica , Crânio/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...