Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 181: 297-307, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710401

RESUMO

The pericellular matrix (PCM) serves a critical role in signal transduction and mechanoprotection in chondrocytes. Osteoarthritis (OA) leads to a gradual deterioration of the cartilage, marked by a shift in the spatial arrangement of chondrocytes from initially isolated strands to large cell clusters in end-stage degeneration. These changes coincide with progressive enzymatic breakdown of the PCM. This study aims to assess the role and involvement of specific matrix metalloproteinases (MMPs) in PCM degradation during OA. We selected cartilage samples from 148 OA patients based on the predominant spatial chondrocyte patterns. The presence of various MMPs (-1,-2,-3,-7,-8,-9,-10,-12,-13) was identified by multiplexed immunoassays. For each pattern and identified MMP, the levels and activation states (pro-form vs. active form) were measured by zymograms and western blots. The localization of these MMPs was determined using immunohistochemical labeling. To verify these results, healthy cartilage was exposed to purified MMPs, and the consecutive structural integrity of the PCM was analyzed through immunolabeling and proximity ligation assay. Screening showed elevated levels of MMP-1,-2,-3,-7, and -13, with their expression profile showing a clear dependency of the degeneration stage. MMP-2 and -7 were localized in the PCM, whereas MMP-1,-7, and -13 were predominantly intracellular. We found that MMP-2 and -3 directly disrupt collagen type VI, and MMP-3 and -7 destroy perlecan. MMP-2, -3, and -7 emerge as central players in early PCM degradation in OA. With the disease's initial stages already displaying elevated peaks in MMP expression, this insight may guide early targeted therapies to halt abnormal PCM remodeling. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) causes a gradual deterioration of the articular cartilage, accompanied by a progressive breakdown of the pericellular matrix (PCM). The PCM's crucial function in protecting and transmitting signals within chondrocytes is impaired in OA. By studying 148 OA-patient cartilage samples, the involvement of matrix metalloproteinases (MMPs) in PCM breakdown was explored. Findings highlighted elevated levels of certain MMPs linked to different stages of degeneration. Notably, MMP-2, -3, and -7 were identified as potent contributors to early PCM degradation, disrupting key components like collagen type VI and perlecan. Understanding these MMPs' roles in initiating OA progression, especially in its early stages, provides insights into potential targets for interventions to preserve PCM integrity and potentially impeding OA advancement.


Assuntos
Matriz Extracelular , Metaloproteinases da Matriz , Osteoartrite , Proteólise , Humanos , Metaloproteinases da Matriz/metabolismo , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/enzimologia , Matriz Extracelular/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/enzimologia , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo
2.
BMC Cancer ; 23(1): 862, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700272

RESUMO

BACKGROUND: Cancer cells are characterized by changes in cell cytoskeletal architecture and stiffness. Despite advances in understanding the molecular mechanisms of musculoskeletal cancers, the corresponding cellular mechanical properties remain largely unexplored. The aim of this study was to investigate the changes in cellular stiffness and the associated cytoskeleton configuration alterations in various musculoskeletal cancer cells. METHODS: Cell lines from five main sarcoma types of the musculoskeletal system (chondrosarcoma, osteosarcoma, Ewing sarcoma, fibrosarcoma and rhabdomyosarcoma) as well as their healthy cell counterparts (chondrocytes, osteoblasts, mesenchymal stem cells, fibroblasts, skeletal muscle cells) were subjected to cell stiffness measurements via atomic force microscopy (AFM). Biochemical and structural changes of the cytoskeleton (F-actin, ß-tubulin and actin-related protein 2/3) were assessed by means of fluorescence labelling, ELISA and qPCR. RESULTS: While AFM stiffness measurements showed that the majority of cancer cells (osteosarcoma, Ewing sarcoma, fibrosarcoma and rhabdomyosarcoma) were significantly less stiff than their corresponding non-malignant counterparts (p < 0.001), the chondrosarcoma cells were significant stiffer than the chondrocytes (p < 0.001). Microscopically, the distribution of F-actin differed between malignant entities and healthy counterparts: the organisation in well aligned stress fibers was disrupted in cancer cell lines and the proteins was mainly concentrated at the periphery of the cell, whereas ß-tubulin had a predominantly perinuclear localization. While the F-actin content was lower in cancer cells, particularly Ewing sarcoma (p = 0.018) and Fibrosarcoma (p = 0.023), this effect was even more pronounced in the case of ß-tubulin for all cancer-healthy cell duos. Interestingly, chondrosarcoma cells were characterized by a significant upregulation of ß-tubulin gene expression (p = 0.005) and protein amount (p = 0.032). CONCLUSION: Modifications in cellular stiffness, along with structural and compositional cytoskeleton rearrangement, constitute typical features of sarcomas cells, when compared to their healthy counterpart. Notably, whereas a decrease in stiffness is typically a feature of malignant entities, chondrosarcoma cells were stiffer than chondrocytes, with chondrosarcoma cells exhibiting a significantly upregulated ß-tubulin expression. Each Sarcoma entity may have his own cellular-stiffness and cytoskeleton organisation/composition fingerprint, which in turn may be exploited for diagnostic or therapeutic purposes.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Fibrossarcoma , Osteossarcoma , Rabdomiossarcoma , Sarcoma de Ewing , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Sarcoma de Ewing/genética , Tubulina (Proteína) , Actinas , Osteossarcoma/genética , Rabdomiossarcoma/genética , Condrossarcoma/genética , Biomarcadores , Neoplasias Ósseas/genética
3.
Front Cell Dev Biol ; 10: 953516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393863

RESUMO

Dexamethasone (dexa) is commonly used to stimulate osteogenic differentiation of mesenchymal stem/stromal cells (MSCs) in vitro. However, it is paradoxical that glucocorticoids (GCs) such as dexa lead to bone loss and increased fracture risk in patients undergoing glucocorticoid therapy, causing glucocorticoid-induced osteoporosis (GIOP). In a recent publication, we demonstrated that osteogenic differentiation of progenitor cells isolated from jaw periosteal tissue (JPCs) does not depend on dexa, if the medium is supplemented with human platelet lysate (hPL) instead of fetal bovine serum (FBS). This allows the in vitro conditions to be much closer to the natural situation in vivo and enables us to compare osteogenic differentiation with and without dexa. In the present study, we demonstrate that the absence of dexa did not reduce mineralization capacity, but instead slightly improved the osteogenic differentiation of jaw periosteal cells. On the other hand, we show that dexa supplementation strongly alters the gene expression, extracellular matrix (ECM), and cellular communication of jaw periosteal cells. The secretome of periosteal cells previously treated with an osteogenic medium with and without dexa was used to investigate the changes in paracrine secretion caused by dexa. Dexa altered the secretion of several cytokines by jaw periosteal cells and strongly induced osteoclast differentiation of peripheral blood mononuclear cells (PBMCs). This study demonstrates how dexa supplementation can influence the outcome of in vitro studies and highlights a possible role of periosteal cells in the pathogenesis of glucocorticoid-induced osteoporosis. The methods used here can serve as a model for studying bone formation, fracture healing, and various pathological conditions such as (glucocorticoid-induced) osteoporosis, osteoarthritis, bone cancer, and others, in which the interactions of osteoblasts with surrounding cells play a key role.

4.
J Vis Exp ; (188)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36373904

RESUMO

Without a doubt, atomic force microscopy (AFM) is currently one of the most powerful and useful techniques to assess micro and even nano-cues in the biological field. However, as with any other microscopic approach, methodological challenges can arise. In particular, the characteristics of the sample, sample preparation, type of instrument, and indentation probe can lead to unwanted artifacts. In this protocol, we exemplify these emerging issues on healthy as well as osteoarthritic articular cartilage explants. To this end, we first show via a step-by-step approach how to generate, grade, and visually classify ex vivo articular cartilage discs according to different stages of degeneration by means of large 2D mosaic fluorescence imaging of the whole tissue explants. The major strength of the ex vivo model is that it comprises aged, native, human cartilage that allows the investigation of osteoarthritis-related changes from early onset to progression. In addition, common pitfalls in tissue preparation, as well as the actual AFM procedure together with the subsequent data analysis, are also presented. We show how basic but crucial steps such as sample preparation and processing, topographic sample characteristics caused by advanced degeneration, and sample-tip interaction can impact data acquisition. We also subject to scrutiny the most common problems in AFM and describe, where possible, how to overcome them. Knowledge of these limitations is of the utmost importance for correct data acquisition, interpretation, and, ultimately, the embedding of findings into a broad scientific context.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Idoso , Microscopia de Força Atômica/métodos , Artefatos
5.
Biomedicines ; 10(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428464

RESUMO

Ewing sarcomas (ES) are aggressive primary bone tumors that require radical therapy. Promising low toxicity, 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy (PDT) could enhance the effectiveness of conventional treatment modalities (e.g., doxorubicin (DOX)), improving, thus, the anti-tumorigenic effects. In this study, we investigated the effects of DOX and 5-ALA PDT alone or in combination on three different human ES cell lines. Cell viability, reactive oxygen species (ROS) production, and cellular stiffness were measured 24 h after PDT (blue light-wavelength 436 nm with 5-ALA) with or without DOX. ES cell lines have a different sensitivity to the same doses and exposure of 5-ALA PDT. DOX in combination with 5-ALA PDT was found to be effective in impairing the viability of all ES cells while also increasing cytotoxic activity by high ROS production. The stiffness of the ES cells increased significantly (p < 0.05) post treatment. Overall, our results showed that across multiple ES cell lines, 5-ALA PDT can successfully and safely be combined with DOX to potentiate the therapeutic effect. The 5-ALA PDT has the potential to be a highly effective treatment when used alone or in conjunction with other treatments. More research is needed to assess the effectiveness of 5-ALA PDT in in vivo settings.

6.
J Vis Exp ; (183)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35635473

RESUMO

Bone metastases are associated with poor prognosis and low quality of life for the affected patients. Photodynamic therapy (PDT) emerges as a noninvasive therapy that can target local metastatic bone lesions. This paper presents an in vitro method to study the PDT effect in adherent cell lines. To this end, we demonstrate a step-by-step approach to subject both primary (giant cell bone tumor) and human bone metastatic cancer cell lines (derived from a primary invasive ductal breast carcinoma and renal carcinoma) to 5-aminolevulinic acid (5-ALA)-mediated PDT. After 24 h post 5-ALA-PDT irradiation (blue light-wavelength 436 nm), the therapeutic effect was assessed in terms of cell migration potential, viability, apoptotic features, and cellular growth arrest (senescence). Post 5-ALA-PDT irradiation, musculoskeletal-derived cell lines respond differently to the same doses and exposure of PDT. Depending on the extent of cellular damage triggered by PDT exposure, two different cell fates-apoptosis and senescence were noted. Variable sensitivity to PDT therapy among different bone cancer cell lines provides useful information for selecting more appropriate PDT settings in clinical settings. This protocol is designed to exemplify the use of PDT in the context of musculoskeletal neoplastic cell lines. It may be adjusted to investigate the therapeutic effect of PDT on various cancer cell lines and various photosensitizers and light sources.


Assuntos
Neoplasias Ósseas , Fotoquimioterapia , Ácido Aminolevulínico/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Fotoquimioterapia/métodos , Qualidade de Vida
7.
J Biomech ; 132: 110955, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35042088

RESUMO

Osteoarthritis (OA) is a degenerative joint disease currently affecting half of all women and one-third of all men aged over 65 and it is predicted to even increase in the next decades. In the variety of causes leading to OA, the first common denominator are changes in the extracellular matrix of the cartilage. In later stages, OA affects the whole joint spreading to higher levels of tissue architecture causing irreversible functional and structural damage. To date, the diagnosis of OA is only formulated in the late stages of the disease. This is also, where most present therapies apply. Since a precise diagnosis is a prerequisite for targeted therapy, tools to diagnose early OA, monitor its progression, and accurately stage the disease are wanted. This review article focuses on recent advances in indentation technologies to diagnose early OA through describing biomechanical cartilage characteristics. We provide an overview of microindentation instruments, indentation-type Atomic Force Microscopy, ultrasound, and water-jet ultrasound indentation, Optical Coherence Tomography-based air-jet indentation, as well as fiber Bragg grating.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/diagnóstico por imagem , Feminino , Humanos , Masculino , Microscopia de Força Atômica , Osteoartrite/diagnóstico por imagem , Tomografia de Coerência Óptica , Ultrassonografia
8.
Front Bioeng Biotechnol ; 10: 1006615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619385

RESUMO

Analogous to articular cartilage, changes in spatial chondrocyte organisation have been proposed to be a strong indicator for local tissue degeneration in the intervertebral disc (IVD). While a progressive structural and functional degradation of the extracellular (ECM) and pericellular (PCM) matrix occurs in osteoarthritic cartilage, these processes have not yet been biomechanically elucidated in the IVD. We aimed to evaluate the local stiffness of the ECM and PCM in the anulus fibrosus of the IVD on the basis of local chondrocyte spatial organisation. Using atomic force microscopy, we measured the Young's modulus of the local ECM and PCM in human and bovine disc samples using the spatial chondrocyte patterns as an image-based biomarker. By measuring tissue from 31 patients and six bovine samples, we found a significant difference in the elastic moduli (E) of the PCM in clusters when compared to the healthy patterns single cells (p = 0.029), pairs (p = 0.016), and string-formations (p = 0.010). The ECM/PCM ratio ranged from 0.62-0.89. Interestingly, in the bovine IVD, the ECM/PCM ratio of the E significantly varied (p = 0.002) depending on the tissue origin. Overall the reduced E in clusters demonstrates that cluster formation is not only a morphological phenomenon describing disc degeneration, but it marks a compromised biomechanical functioning. Immunohistochemical analyses indicate that collagen type III degradation might be involved. This study is the first to describe and quantify the differences in the E of the ECM in relation to the PCM in the anulus fibrosus of the IVD by means of atomic force microscopy on the basis of spatial chondrocyte organisation.

9.
J Vis Exp ; (177)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34897276

RESUMO

Urinary incontinence (UI) is a highly prevalent condition characterized by the deficiency of the urethral sphincter muscle. Regenerative medicine branches, particularly cell therapy, are novel approaches to improve and restore the urethral sphincter function. Even though injection of active functional cells is routinely performed in clinical settings by needle and syringe, these approaches have significant disadvantages and limitations. In this context, needle-free waterjet (WJ) technology is a feasible and innovative method that can inject viable cells by visual guided cystoscopy in the urethral sphincter. In the present study, we used WJ to deliver porcine adipose tissue-derived stromal cells (pADSCs) into cadaveric urethral tissue and subsequently investigated the effect of WJ delivery on cell yield and viability. We also assessed the biomechanical features (i.e., elasticity) by atomic force microscopy (AFM) measurements. We showed that WJ delivered pADSCs were significantly reduced in their cellular elasticity. The viability was significantly lower compared to controls but is still above 80%.


Assuntos
Tecido Adiposo , Células Estromais , Animais , Humanos , Injeções/métodos , Masculino , Suínos , Tecnologia , Uretra
10.
Biology (Basel) ; 10(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681119

RESUMO

Bone is a frequent site of metastases, being typically associated with a short-term prognosis in affected patients. Photodynamic therapy (PDT) emerges as a promising alternative treatment for controlling malignant disease that can directly target interstitial metastatic lesions. The aim of this study was to assess the effect induced by PDT treatment on both primary (giant cell bone tumor) and human bone metastatic cancer cell lines (derived from a primary invasive ductal breast carcinoma and renal carcinoma). After 24 h post light delivery (blue light-wavelength 436 nm) with 5-aminolevulinic acid, the effect on cellular migration, viability, apoptosis, and senescence were assessed. Our results showed that bone metastasis derived from breast cancer reacted with an inhibition of cell migration coupled with reduced viability and signs of apoptosis such as nuclei fragmentation following PDT exposure. A limited effect in terms of cellular viability inhibition was observed for the cells of giant cell bone tumors. In contrast, bone metastasis derived from renal carcinoma followed a different fate-cells were characterized by senescent features, without a notable effect on cell migration or viability. Collectively, our study illustrates that PDT could act as a successful therapy concept for local tumor control in some entities of bone metastases.

11.
J Vis Exp ; (173)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34309598

RESUMO

Intervertebral disc (IVD) degeneration is a leading cause of low back pain and it entails a high degree of impairment for the affected individuals. To decode disc degeneration and to be able to develop regenerative approaches a thorough understanding of the cellular biology of the IVD is essential. One aspect of this biology that still remains unanswered is the question of how cells are spatially arranged in a physiological state and during degeneration. The biological properties of the IVD and its availability make this tissue difficult to analyze. The present study investigates spatial chondrocyte organization in the anulus fibrosus from early embryonic development to end-stage degeneration. An optical sectioning method (Apotome) is applied to perform high resolution staining analyses using bovine embryonic tissue as an animal model and human disc tissue obtained from patients undergoing spine surgery. From a very high chondrocyte density in the early embryonic bovine disc, the number of cells decreases during gestation, growth, and maturation. In human discs, an increase in cellular density accompanied the progression of tissue degeneration. As had already been demonstrated in articular cartilage, cluster formation represents a characteristic feature of advanced disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Animais , Bovinos , Desenvolvimento Embrionário , Humanos
12.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202056

RESUMO

Mesenchymal stem cells (MSC) are known for their vascular regeneration capacity by neoangiogenesis. Even though, several delivery approaches exist, particularly in the case of intravascular delivery, only limited number of cells reach the targeted tissue and are not able to remain on site. Applicated cells exhibit poor survival accompanied with a loss of functionality. Moreover, cell application techniques lead to cell death and impede the overall MSC function and survival. 3D cell spheroids mimic the physiological microenvironment, thus, overcoming these limitations. Therefore, in this study we aimed to evaluate and assess the feasibility of 3D MSCs spheroids for endovascular application, for treatment of ischemic peripheral vascular pathologies. Multicellular 3D MSC spheroids were generated at different cell seeding densities, labelled with ultra-small particles of iron oxide (USPIO) and investigated in vitro in terms of morphology, size distribution, mechanical stability as well as ex vivo with magnetic resonance imaging (MRI) to assess their trackability and distribution. Generated 3D spheroids were stable, viable, maintained stem cell phenotype and were easily trackable and visualized via MRI. MSC 3D spheroids are suitable candidates for endovascular delivery approaches in the context of ischemic peripheral vascular pathologies.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Esferoides Celulares , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Isquemia/diagnóstico , Isquemia/etiologia , Isquemia/metabolismo , Isquemia/terapia , Imageamento por Ressonância Magnética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/etiologia , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/terapia , Esferoides Celulares/citologia , Esferoides Celulares/ultraestrutura , Coloração e Rotulagem
13.
Sci Rep ; 11(1): 9783, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963289

RESUMO

Using two-dimensional top-down view microscopy, researchers have recently described chondrocytes as being spatially arranged in distinct patterns such as strings, double strings, and small and large clusters. Because of the seeming association of these changes with tissue degeneration, they have been proposed as an image-based biomarker for early osteoarthritis (OA) staging. The aim of our study was to investigate the spatial arrangement of chondrocytes in human articular cartilage in a 3D fashion and to evaluate the 3D changes of these patterns in the context of local tissue destruction. Decalcified femoral condyle resections from the load-bearing area were analysed in 3D for their spatial chondrocyte organisation by means of fluorescence microscopy and synchrotron-radiation micro-computed tomography (SR-µCT). In intact cartilage chondrocyte strings can be found in the superficial, transitional and deep zones. The proposed pattern changes accompanying tissue destruction could be located not just along the surface but also through all layers of cartilage. Each spatial pattern was characterised by a different cellular density (the only exception being between single and double strings with p = 0.062), with cellular density significantly increasing alongside the increase in local tissue degeneration as defined by the chondrocyte patterns. We can thus corroborate that the proposed cellular spatial changes are a three-dimensional function of local tissue degeneration, underlining their relevance as an image-based biomarker for the early diagnosis and description of OA.Clinical trial registration number: Project number of the ethics committee of the University of Tübingen:171/2014BO2.


Assuntos
Cartilagem Articular , Condrócitos , Imageamento Tridimensional , Osteoartrite do Joelho , Microtomografia por Raio-X , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Feminino , Humanos , Masculino , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/metabolismo
14.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921246

RESUMO

Previously, we developed a novel, needle-free waterjet (WJ) technology capable of injecting viable cells by visual guided cystoscopy in the urethral sphincter. In the present study, we aimed to investigate the effect of WJ technology on cell viability, surface markers, differentiation and attachment capabilities, and biomechanical features. Porcine adipose tissue-derived stromal cells (pADSCs) were isolated, expanded, and injected by WJ technology. Cell attachment assays were employed to investigate cell-matrix interactions. Cell surface molecules were analyzed by flow cytometry. Cells injected by Williams Needle (WN), normal cannula, or not injected cells served as controls. Biomechanical properties were assessed by atomic force microscopy (AFM). pADSCs injected by the WJ were viable (85.9%), proliferated well, and maintained their in vitro adipogenic and osteogenic differentiation capacities. The attachment of pADSCs was not affected by WJ injection and no major changes were noted for cell surface markers. AFM measurements yielded a significant reduction of cellular stiffness after WJ injections (p < 0.001). WJ cell delivery satisfies several key considerations required in a clinical context, including the fast, simple, and reproducible delivery of viable cells. However, the optimization of the WJ device may be necessary to further reduce the effects on the biomechanical properties of cells.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/crescimento & desenvolvimento , Animais , Proliferação de Células/genética , Sobrevivência Celular/genética , Humanos , Injeções , Osteogênese/genética , Células Estromais/citologia , Células Estromais/transplante , Suínos
15.
Spine J ; 21(8): 1387-1398, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33872805

RESUMO

BACKGROUND CONTEXT: Low back pain is commonly attributed to intervertebral disc (IVD) degeneration. IVD resembles articular cartilage in its biochemical and cellular composition in many ways. For articular cartilage, degeneration stage-specific characteristic spatial chondrocyte patterns have recently been described. PURPOSE: This study addresses how spatial chondrocyte organization in the IVD changes from early embryonic development to end stage degeneration. STUDY DESIGN: Ex vivo immunohistochemical analysis. METHODS: We immunohistochemically investigated bovine IVD-tissue (n=72) from early embryonic development to early disc degeneration and human adult IVD-tissue (n=25) operated for trauma or degeneration for cellular density and chondrocyte spatial organization. IVD samples were sectioned along the main collagen fiber orientation. Nuclei were stained with DAPI and their number and spatial patterns were analyzed in an area of 250,000 µm² for each tissue category. RESULTS: The initially very high cellular density in the early embryonic bovine disc (11,431 cells/mm²) steadily decreases during gestation, growth and maturation to about 71 cell/mm² in the fully grown cattle. Interestingly, in human degenerative discs, a new increase in this figure could be noted (184 cells/mm). The IVD chondrocytes appear to be predominantly present as single cells. Especially in the time after birth, string-formations represent up to 32% of all cells in the anulus fibrosus, although single cells are the predominant spatial pattern (>50%) over the entire time. With increasing degeneration, the relative proportion of single cells in human IVDs continuously decreases (12%). At the same time, the share of cells organized in clusters increases (70%). CONCLUSION: Similar to articular cartilage, spatial chondrocyte organization appears to be a strong indicator for local tissue degeneration in the IVD. CLINICAL SIGNIFICANCE: In the future these findings may be important for the detection and therapy of IVD degeneration in early stages.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Bovinos , Condrócitos , Desenvolvimento Embrionário
16.
J Vis Exp ; (159)2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32510478

RESUMO

Biomechanical properties of cells and tissues not only regulate their shape and function but are also crucial for maintaining their vitality. Changes in elasticity can propagate or trigger the onset of major diseases like cancer or osteoarthritis (OA). Atomic force microscopy (AFM) has emerged as a strong tool to qualitatively and quantitatively characterize the biomechanical properties of specific biological target structures on a microscopic scale, measuring forces in a range from as small as the piconewton to the micronewton. Biomechanical properties are of special importance in musculoskeletal tissues, which are subjected to high levels of strain. OA as a degenerative disease of the cartilage results in the disruption of the pericellular matrix (PCM) and the spatial rearrangement of the chondrocytes embedded in their extracellular matrix (ECM). Disruption in PCM and ECM has been associated with changes in the biomechanical properties of cartilage. In the present study we used AFM to quantify these changes in relation to the specific spatial pattern changes of the chondrocytes. With each pattern change, significant changes in elasticity were observed for both the PCM and ECM. Measuring the local elasticity thus allows for drawing direct conclusions about the degree of local tissue degeneration in OA.


Assuntos
Cartilagem Articular/patologia , Condrócitos/patologia , Matriz Extracelular/patologia , Microscopia de Força Atômica/métodos , Osteoartrite/patologia , Elasticidade , Humanos
17.
J Orthop Res ; 38(10): 2170-2180, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32301522

RESUMO

During osteoarthritis, chondrocytes change their spatial arrangement from single to double strings, then to small and big clusters. This change in pattern has recently been established as an image-based biomarker for osteoarthritis. The pericellular matrix (PCM) appears to degrade together alongside cellular reorganization. The aim of this study was to characterize this PCM-degradation based on different cellular patterns. We additionally wanted to identify the earliest time point of PCM-breakdown in this physiopathological model. To this end, cartilage samples were selected according to their predominant cellular pattern. Qualitative analysis of PCM degradation was performed immunohistochemically by analysing five main PCM components: collagen type VI, perlecan, collagen type III, biglycan, and fibrillin-1 (n = 6 patients). Their protein content was quantified by enzyme-linked immunosorbent assay (127 patients). Accompanying spatial cellular rearrangement, the PCM is progressively destroyed, with a pericellular signal loss in fluorescence microscopy for collagen type VI, perlecan, and biglycan. This loss in protein signal is accompanied by a reduction in total protein content from single strings to big clusters (P < .001 for collagen type VI, P = .003 for perlecan, and P < .001 for biglycan). As a result of an increase in the number of cells from single strings to big clusters, the amount of protein available per cell also decreases for collagen type III and fibrillin-1, where total protein levels remain constant. Biochemical changes of the PCM and cellular rearrangement are thus highly interconnected hallmarks of osteoarthritis. Interestingly, the earliest point in time for a relevant PCM impairment appears to be at the transition to small clusters.


Assuntos
Cartilagem Articular/patologia , Condrócitos , Matriz Extracelular/metabolismo , Osteoartrite/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/patologia
18.
J Biomech ; 97: 109409, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31629545

RESUMO

During osteoarthritis (OA)-triggered cartilage degeneration, the chondrocytes spatially rearrange from single to double strings, and then to small and finally big clusters. Both the extracellular matrix (ECM) and the pericellular matrix (PCM) progressively degrade in osteoarthritis, changing the overall mechanical properties of the cartilage. We investigated the mechanical properties particularly elasticity of the ECM and PCM and their interconnection as a function of chondrocyte spatial organisation. Human articular cartilage samples from 30 patients were categorised according to their cellular pattern. Elasticity of the ECM and PCM was assessed by means of atomic force microscopy (AFM). Significant decreases were observed in the elasticity of both the ECM and the PCM with each change of cellular pattern, except from single to double strings in the ECM (p = 0.072). Spatial reorganisation strongly correlated with the elasticity of the ECM (r = -0.768, p < 0.001) and of the PCM (r = -0.729, p < 0.001). The ECM/PCM ratio remained unchanged (r = -0.099, p = 0.281). This study is the first to describe and quantify the differences in the elastic moduli of the ECM in relation to the PCM on the basis of chondrocyte spatial arrangement. This study shows that the elastic changes of the ECM and the PCM occur simultaneously, unidirectionally, and to a comparable degree.


Assuntos
Matriz Extracelular/fisiologia , Osteoartrite/fisiopatologia , Cartilagem Articular/fisiologia , Condrócitos/fisiologia , Módulo de Elasticidade , Humanos , Microscopia de Força Atômica
19.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461878

RESUMO

Previously, we detected a higher degree of mineralization in fetal calf serum (FCS) compared to serum-free cultured jaw periosteum derived osteoprogenitor cells (JPCs). By Raman spectroscopy, we detected an earlier formation of mineralized extracellular matrix (ECM) of higher quality under serum-free media conditions. However, mineralization potential remained too low. In the present study, we aimed to investigate the biochemical composition and subsequent biomechanical properties of the JPC-formed ECM and minerals under human platelet lysate (hPL) and FCS supplementation. JPCs were isolated (n = 4 donors) and expanded under FCS conditions and used in passage five for osteogenic induction under both, FCS and hPL media supplementation. Raman spectroscopy and Alizarin Red/von Kossa staining were employed for biochemical composition analyses and for visualization and quantification of mineralization. Osteocalcin gene expression was analyzed by quantitative PCR. Biomechanical properties were assessed by using atomic force microscopy (AFM). Raman spectroscopic measurements showed significantly higher (p < 0.001) phosphate to protein ratios and in the tendency, lower carbonate to phosphate ratios in osteogenically induced JPCs under hPL in comparison to FCS culturing. Furthermore, higher crystal sizes were detected under hPL culturing of the cells. With respect to the ECM, significantly higher ratios of the precursor protein proline to hydroxyproline were detected in hPL-cultured JPC monolayers (p < 0.001). Additionally, significantly higher levels (p < 0.001) of collagen cross-linking were calculated, indicating a higher degree of collagen maturation in hPL-cultured JPCs. By atomic force microscopy, a significant increase in ECM stiffness (p < 0.001) of FCS cultured JPC monolayers was observed. The reverse effect was measured for the JPC formed precipitates/minerals. Under hPL supplementation, JPCs formed minerals of significantly higher stiffness (p < 0.001) when compared to the FCS setting. This study demonstrates that hPL culturing of JPCs leads to the formation of an anorganic material of superior quality in terms of biochemical composition and mechanical properties.


Assuntos
Cálcio/metabolismo , Arcada Osseodentária/citologia , Osteoblastos/metabolismo , Periósteo/metabolismo , Fosfatos/metabolismo , Calcificação Fisiológica , Carbonatos/metabolismo , Células Cultivadas , Colágeno/metabolismo , Meios de Cultura/farmacologia , Matriz Extracelular/metabolismo , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Osteocalcina/genética , Osteocalcina/metabolismo , Periósteo/citologia , Prolina/metabolismo
20.
J Tissue Eng Regen Med ; 12(9): 2000-2010, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30053767

RESUMO

A type VI collagen-rich pericellular matrix (PCM) encloses both intervertebral disk (IVD) and articular cartilage chondrocytes. In the latter, the PCM protects the chondrocytes from mechanical overload, whereas tissue degeneration is associated with PCM destruction. As little is known about the IVD PCM, we investigated chondrocyte survival after mechanical overload as well as PCM structural integrity as a function of clinical tissue degeneration. The hypothesis was that IVD degeneration may affect PCM integrity and overload-related chondrocyte survival. Cylindrical human IVD explants from patients undergoing surgical procedures for lumbar disk degeneration, disk prolapse, or spinal trauma were generated and scored. Mechanical overload was applied by single uniaxial 50% compression followed by immediate release, and the explants were live-dead stained (n = 20 explants). Type VI collagen, the major PCM component, was fluorescent stained and the extent was determined, in which individual cells were enclosed by a recognizable PCM; this was termed PCM fraction. More than 50% of chondrocytes in all degenerative IVD explants displayed <25% PCM fraction and a lower PCM fraction correlated with higher cell numbers (p < 0.001), suggesting a PCM structural impairment in IVD degeneration that is associated with chondrocyte clustering. Mechanical overload-induced significantly increased cell death (p = 0.005), and the PCM fraction was significantly lower in overload-induced cell death than in live cells (p = 0.042), suggesting that a fully present PCM has a protective role in mechanical overload. Collectively, human IVD degeneration is associated with a structural impairment of the PCM, which may promote cell death under mechanical overload.


Assuntos
Apoptose , Condrócitos/patologia , Matriz Extracelular/patologia , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/patologia , Adulto , Idoso , Animais , Bovinos , Contagem de Células , Sobrevivência Celular , Força Compressiva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...