Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(36): 19786-19799, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39187786

RESUMO

Bioactive peptides, derived from short protein fragments, are recognized for their neuroprotective properties and potential therapeutic applications in treating central nervous system (CNS) diseases. However, a significant challenge for these peptides is their ability to penetrate the blood-brain barrier (BBB). EVSGPGYSPN (EV-10) peptide, a walnut-derived peptide, has demonstrated promising neuroprotective effects in vivo. This study aimed to investigate the transportability of EV-10 across the BBB, explore its capacity to penetrate this barrier, and elucidate the regulatory mechanisms underlying peptide-induced cellular internalization and transport pathways within the BBB. The results indicated that at a concentration of 100 µM and osmotic time of 4 h, the apparent permeability coefficient of EV-10 was Papp = 8.52166 ± 0.58 × 10-6 cm/s. The penetration efficiency of EV-10 was influenced by time, concentration, and temperature. Utilizing Western blot analysis, immunofluorescence, and flow cytometry, in conjunction with the caveolin (Cav)-specific inhibitor M-ß-CD, we confirmed that EV-10 undergoes transcellular transport through a Cav-dependent endocytosis pathway. Notably, the tight junction proteins ZO-1, occludin, and claudin-5 were not disrupted by EV-10. Throughout its transport, EV-10 was localized within the mitochondria, Golgi apparatus, endoplasmic reticulum, lysosomes, endosomes, and cell membranes. Moreover, Cav-1 overexpression facilitated the release of EV-10 from lysosomes. Evidence of EV-10 accumulation was observed in mouse brains using brain slice scans. This study is the first to demonstrate that Cav-1 can facilitate the targeted delivery of walnut-derived peptide to the brain, laying a foundation for the development of functional foods aimed at CNS disease intervention.


Assuntos
Barreira Hematoencefálica , Juglans , Peptídeos , Juglans/química , Juglans/metabolismo , Barreira Hematoencefálica/metabolismo , Animais , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Transporte Biológico , Caveolinas/metabolismo , Caveolinas/química , Humanos , Endocitose , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Nozes/química , Nozes/metabolismo
2.
J Agric Food Chem ; 72(20): 11561-11576, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739709

RESUMO

The aim of this study is to validate the activity of hazelnut (Corylus avellana L.)-derived immunoactive peptides inhibiting the main protease (Mpro) of SARS-CoV-2 and further unveil their interaction mechanism using in vitro assays, molecular dynamics (MD) simulations, and binding free energy calculations. In general, the enzymatic hydrolysis components, especially molecular weight < 3 kDa, possess good immune activity as measured by the proliferation ability of mouse splenic lymphocytes and phagocytic activity of mouse peritoneal macrophages. Over 866 unique peptide sequences were isolated, purified, and then identified by nanohigh-performance liquid chromatography/tandem mass spectrometry (NANO-HPLC-MS/MS) from hazelnut protein hydrolysates, but Trp-Trp-Asn-Leu-Asn (WWNLN) and Trp-Ala-Val-Leu-Lys (WAVLK) in particular are found to increase the cell viability and phagocytic capacity of RAW264.7 macrophages as well as promote the secretion of the cytokines nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß). Fluorescence resonance energy transfer assay elucidated that WWNLN and WAVLK exhibit excellent inhibitory potency against Mpro, with IC50 values of 6.695 and 16.750 µM, respectively. Classical all-atom MD simulations show that hydrogen bonds play a pivotal role in stabilizing the complex conformation and protein-peptide interaction. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculation indicates that WWNLN has a lower binding free energy with Mpro than WAVLK. Furthermore, adsorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions illustrate favorable drug-likeness and pharmacokinetic properties of WWNLN compared to WAVLK. This study provides a new understanding of the immunomodulatory activity of hazelnut hydrolysates and sheds light on peptide inhibitors targeting Mpro.


Assuntos
Corylus , Peptídeos , Animais , Camundongos , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Corylus/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/imunologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Células RAW 264.7 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/química , Células Vero
3.
J Agric Food Chem ; 72(22): 12541-12554, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785039

RESUMO

We investigated the protective effect of walnut peptides and YVPFPLP (YP-7) on scopolamine-induced memory impairment in mice and ß-amyloid (Aß)-induced excitotoxic injury in primary hippocampal neurons, respectively. Additionally, the protective mechanism of YP-7 on neuronal excitotoxicity was explored. Mouse behavioral and hippocampal slice morphology experiments indicate that YP-7 improves the learning and memory abilities of cognitively impaired mice and protects synaptic integrity. Immunofluorescence, western blotting, and electrophysiological experiments on primary hippocampal neurons indicate that YP-7 inhibits neuronal damage caused by excessive excitation of neurons induced by Aß. HT-22 cell treatment with peroxisome proliferator-activated receptor γ (PPARγ) activators and inhibitors showed that YP-7 activates PPARγ expression and maintains normal neuronal function by forming stable complexes with PPARγ to inhibit the extracellular regulated protein kinase pathway. Therefore, YP-7 can ameliorate glutamate-induced excitotoxicity and maintain neuronal signaling. This provides a theoretical basis for active peptides to ameliorate excitotoxicity and the development of functional foods.


Assuntos
Hipocampo , Juglans , Transtornos da Memória , Neurônios , Peptídeos , Animais , Humanos , Masculino , Camundongos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Juglans/química , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , PPAR gama/metabolismo , PPAR gama/genética , Escopolamina
4.
Food Funct ; 15(9): 5176-5177, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38646732

RESUMO

Correction for 'Therapeutic effects of a walnut-derived peptide on NLRP3 inflammasome activation, synaptic plasticity, and cognitive dysfunction in T2DM mice' by Yanru Li et al., Food Funct., 2024, 15, 2295-2313, https://doi.org/10.1039/D3FO05076A.

5.
Food Funct ; 15(4): 2295-2313, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323487

RESUMO

NLRP3 inflammasome activation plays a key role in the development of diabetes-induced cognitive impairment. However, strategies to inhibit NLRP3 inflammasome activation remain elusive. Herein, we evaluated the impact of a walnut-derived peptide, TWLPLPR (TW-7), on cognitive impairment in high-fat diet/streptozotocin-induced type 2 diabetes mellitus (T2DM) mice and explored its underlying mechanisms in high glucose-induced HT-22 cells. In the Morris water maze test, TW-7 alleviated cognitive deficits in mice; this was confirmed at the level of synaptic structure and dendritic spine density in the mouse hippocampus using transmission electron microscopy and Golgi staining. TW-7 increased the expression of synaptic plasticity-related proteins and suppressed the NEK7/NLRP3 inflammatory pathway, as determined by western blotting and immunofluorescence analysis. The mechanism of action of TW-7 was verified in an HT-22 cell model of high glucose-induced insulin resistance. Collectively, TW-7 could regulate T2DM neuroinflammation and synaptic function-induced cognitive impairment by inhibiting NLRP3 inflammasome activation and improving synaptic plasticity.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Juglans , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Juglans/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Glucose
6.
J Agric Food Chem ; 71(51): 20453-20478, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085598

RESUMO

Food-derived peptides, as dietary supplements, have significant effects on promoting brain health and relieving central nervous system (CNS) diseases. However, the blood-brain barrier (BBB) greatly limits their in-brain bioavailability. Thus, overcoming the BBB to target the CNS is a major challenge for bioactive peptides in the prevention and treatment of CNS diseases. This review discusses improvement in the neuroprotective function of food-derived active peptides in CNS diseases, as well as the source of BBB penetrating peptides (BBB-shuttles) and the mechanism of transmembrane transport. Notably, this review also discusses various peptide modification methods to overcome the low permeability and stability of the BBB. Lipification, glycosylation, introduction of disulfide bonds, and cyclization are effective strategies for improving the penetration efficiency of peptides through the BBB. This review provides a new prospective for improving their neuroprotective function and developing treatments to delay or even prevent CNS diseases.


Assuntos
Barreira Hematoencefálica , Doenças do Sistema Nervoso Central , Humanos , Barreira Hematoencefálica/metabolismo , Estudos Prospectivos , Encéfalo/metabolismo , Peptídeos/metabolismo , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/prevenção & controle , Transporte Biológico
7.
Food Res Int ; 162(Pt A): 112029, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461249

RESUMO

Disruption of the blood-brain barrier (BBB) has been observed in several neurological diseases. This study explored the protective effect of the walnut-derived peptide TWLPLPR (TW-7) against d-galactose (d-gal)-induced cognitive disturbance in mice and its potential protection mechanism in ß-amyloid 25-35 (Aß25-35)-injured bEnd.3 cells. TW-7 improved the learning ability and memory of the cognitive impairment mice. Transmission electron microscopy showed that the BBB integrity in the hippocampus was restored; while immunofluorescence analysis and western blotting indicated that the protection of BBB integrity was associated with increased expression levels of tight junction (TJ) proteins. In Aß25-35-damaged bEnd.3 cells, treatment with a matrix metalloproteinase 9 (MMP-9) activator and inhibitor confirmed that TW-7 partially reduced MMP-9 expression and increased zonula occludin-1 (ZO-1) and Claudin-5 expression. Furthermore, TW-7 reduced MMP-9 levels by forming stable complexes with it and by inhibiting the NF-κB p65/iNos pathway. These data suggested that TW-7 maintains BBB integrity by inhibiting the expression and activity of MMP-9, and TW-7 improves learning and memory ability in mice.


Assuntos
Juglans , Camundongos , Animais , Galactose/efeitos adversos , Metaloproteinase 9 da Matriz , Barreira Hematoencefálica , Células Endoteliais , Modelos Animais de Doenças , Peptídeos beta-Amiloides
8.
Food Chem X ; 16: 100484, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36313272

RESUMO

The physicochemical and functional properties of myofibrillar protein (MP), sarcoplasmic protein (SP), and myostromin (MY) in Hypomesus olidus muscle were evaluated and reported in this study. These fractions are rich in Glu. Three proteins exhibited significantly different morphologies, colors, and particle sizes. The main protein bands of MP, SP, and MY are 15-220 kDa, 26-60 kDa, and 15-245 kDa, respectively. In particular, MP is more hydrophobic. Three proteins exhibited a maximum UV absorption peak at 270 nm, and all amide I secondary structures were shown to be composed of repetitive units (e.g., α-helices and ß-sheets). The three proteins demonstrated a predominantly amorphous halo, with Td values of 52.22 °C, 59.16 °C, and 58.09 °C. Regarding their properties in water/oil absorption, emulsification, and foaming, MP is the most preferred, followed by SP and MY. In conclusion, Hypomesus olidus muscle proteins are novel and potential functional nutrition ingredients for the food industry.

9.
Pharmacol Res ; 46(4): 301-10, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12361690

RESUMO

Potential risks of cyclohexanol (CH) and cyclohexanediol (CHD) isomers, which are the metabolites derived from cilexetil ester side-chain of several prodrugs such as antibiotics (e.g. cefotiam hexetil) and an antihypertensive agent (candesartan cilexetil), were examined in beagles that were made congestive heart failure (CHF) by rapid ventricular pacing. The following three experiments tested the cardiac effects of i.v. doses of: (1) the metabolites alone, (2) the metabolites under the digoxin-induced bradycardia, and (3) the metabolites given concomitantly with digoxin (0.02 mg kg(-1)). Experiment 1: t-1,2- or 1,4-CHD alone (0.1-12 mg kg(-1)) exerted transient yet reproducible supraventricular or ventricular arrhythmia dose-dependently, whereas CH and 1,3-CHD at 12 mg kg(-1) showed no cardiac effect at all. Experiment 2: t-1,2-CHD (0.1-4 mg kg(-1)), but not CH or 1,3-CHD, induced the additive arrhythmia dose-dependently; t-1,2-CHD (12 mg kg(-1)) caused frequent premature supraventricular contractions and/or irreversible paroxysmal supraventricular tachycardia. Experiment 3: t-1,2-CHD, not CH or 1,3-CHD, caused fatal arrhythmia: one dog showed torsade de pointes followed by ventricular fibrillation, while another showed 3rd degree atrioventricular block and eventually cardiac arrest. In both Experiments 2 and 3, saline vehicle added onto digoxin never caused the irreversible, fatal arrhythmia. In a separate study using healthy dogs without CHF, none of these metabolites did produce cardiac effect. Given the potential risk of generating cardiotoxic metabolites from cilexetil-bearing prodrugs, the use of such prodrugs should be avoided from the patients with CHF, particularly from those who are receiving cardiac glycosides.


Assuntos
Anti-Hipertensivos/toxicidade , Benzimidazóis/toxicidade , Compostos de Bifenilo/toxicidade , Cardiotônicos/toxicidade , Digoxina/toxicidade , Insuficiência Cardíaca/induzido quimicamente , Pró-Fármacos/toxicidade , Tetrazóis , Animais , Anti-Hipertensivos/sangue , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Benzimidazóis/sangue , Compostos de Bifenilo/sangue , Estimulação Cardíaca Artificial , Cardiotônicos/sangue , Digoxina/sangue , Cães , Relação Dose-Resposta a Droga , Insuficiência Cardíaca/patologia , Ventrículos do Coração/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...