RESUMO
Resting-state functional magnetic resonance imaging (rs-fMRI) is increasingly being used to infer the functional organization of the brain. Blood oxygen level-dependent (BOLD) features related to spontaneous neuronal activity, are yet to be clearly understood. Prior studies have hypothesized that rs-fMRI is spontaneous event-related and these events convey crucial information about the neuronal activity in estimating resting state functional connectivity (FC). Attempts have been made to extract these temporal events using a predetermined threshold. However, the thresholding methods in addition to being very sensitive to noise, may consider redundant events or exclude the low-valued inflection points. Here, we extract the event-related temporal onsets from the rs-fMRI time courses using a zero-frequency resonator (ZFR). The ZFR reflects the transient behavior of the BOLD events at its output. The conditional rate (CR) of the BOLD events occurring in a time course with respect to a seed time course is used to derive static FC. The temporal activity around the estimated events called high signal-to-noise ratio (SNR) segments are also obtained in the rs-fMRI time course and are then used to compute static and dynamic FCs during rest. Coactivation pattern (CAP) is the dynamic FC obtained using the high SNR segments driven by the ZFR. The static FC demonstrates that the ZFR-based CR distinguishes the coactivation and non-coactivation scores well in the distribution. CAP analysis demonstrated the stable and longer dwell time dominant resting state functional networks with high SNR segments driven by the ZFR. Static and dynamic FC analysis underpins that the ZFR-driven temporal onsets of BOLD events derive reliable and consistent FCs in the resting brain using a subset of the time points.
Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Adulto , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Descanso/fisiologia , Adulto JovemRESUMO
In functional magnetic resonance imaging (fMRI), temporal onsets of BOLD events contain crucial information on activity-inducing signals and make a significant impact in the analysis of functional connectivity (FC). In literature, the estimation of the onsets of the BOLD events from the acquired blood oxygen level-dependent (BOLD) signal using fMRI is mostly performed by choosing locations with a high value of the BOLD signal. This approach may give false onset points because it can incorporate redundant onsets which could be due to non-neuronal activity or can exclude true low-valued BOLD signals. In this study, we present a novel approach to estimating the temporal onsets of the BOLD events using a zero frequency resonator (ZFR) without necessitating information regarding the experimental paradigm (EP). The proposed approach exploits the impulse-like characteristic of activity-inducing signal to estimate the temporal onset points of BOLD events using ZFR which has been widely studied in the area of speech signal processing to estimate the glottal closure instances. The idea behind the approach is that an ideal neuronal impulse has, in principle, equal energy at all frequencies, including around the zero frequency, and will preserve the information of the temporal onsets of the BOLD events at its output. The ZFR-based approach estimates two important features, namely: 1) task-induced temporal onsets of the BOLD events in the fMRI time course and 2) high SNR (HSNR) regions around the estimated BOLD events. Both the estimated features are used to obtain the FC. Results are demonstrated using both the synthetic and experimental (event-related finger tapping and block design working memory) data. We show that a small number of plausible time points, estimated by ZFR, can convey sufficient information indicating the associated activation pattern. The method also illustrates its significance over the conventional correlation and threshold-based conditional rate analysis to estimate FC. The study demonstrates that ZFR-estimated BOLD events and HSNR regions can produce sufficient functionality of the brain in the task paradigm.