Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73.618
Filtrar
1.
Ophthalmol Sci ; 5(1): 100584, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39318711

RESUMO

Purpose: To develop and validate machine learning (ML) models to predict choroidal nevus transformation to melanoma based on multimodal imaging at initial presentation. Design: Retrospective multicenter study. Participants: Patients diagnosed with choroidal nevus on the Ocular Oncology Service at Wills Eye Hospital (2007-2017) or Mayo Clinic Rochester (2015-2023). Methods: Multimodal imaging was obtained, including fundus photography, fundus autofluorescence, spectral domain OCT, and B-scan ultrasonography. Machine learning models were created (XGBoost, LGBM, Random Forest, Extra Tree) and optimized for area under receiver operating characteristic curve (AUROC). The Wills Eye Hospital cohort was used for training and testing (80% training-20% testing) with fivefold cross validation. The Mayo Clinic cohort provided external validation. Model performance was characterized by AUROC and area under precision-recall curve (AUPRC). Models were interrogated using SHapley Additive exPlanations (SHAP) to identify the features most predictive of conversion from nevus to melanoma. Differences in AUROC and AUPRC between models were tested using 10 000 bootstrap samples with replacement and results. Main Outcome Measures: Area under receiver operating curve and AUPRC for each ML model. Results: There were 2870 nevi included in the study, with conversion to melanoma confirmed in 128 cases. Simple AI Nevus Transformation System (SAINTS; XGBoost) was the top-performing model in the test cohort [pooled AUROC 0.864 (95% confidence interval (CI): 0.864-0.865), pooled AUPRC 0.244 (95% CI: 0.243-0.246)] and in the external validation cohort [pooled AUROC 0.931 (95% CI: 0.930-0.931), pooled AUPRC 0.533 (95% CI: 0.531-0.535)]. Other models also had good discriminative performance: LGBM (test set pooled AUROC 0.831, validation set pooled AUROC 0.815), Random Forest (test set pooled AUROC 0.812, validation set pooled AUROC 0.866), and Extra Tree (test set pooled AUROC 0.826, validation set pooled AUROC 0.915). A model including only nevi with at least 5 years of follow-up demonstrated the best performance in AUPRC (test: pooled 0.592 (95% CI: 0.590-0.594); validation: pooled 0.656 [95% CI: 0.655-0.657]). The top 5 features in SAINTS by SHAP values were: tumor thickness, largest tumor basal diameter, tumor shape, distance to optic nerve, and subretinal fluid extent. Conclusions: We demonstrate accuracy and generalizability of a ML model for predicting choroidal nevus transformation to melanoma based on multimodal imaging. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

2.
Biophys Chem ; 314: 107318, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39226875

RESUMO

The Ebola delta peptide is an amphipathic, 40-residue peptide encoded by the Ebola virus, referred to as E40. The membrane-permeabilising activity of the E40 delta peptide has been demonstrated in cells and lipid vesicles suggesting the E40 delta peptide likely acts as a viroporin. The lytic activity of the peptide increases in the presence of anionic lipids and a disulphide bond in the C-terminal part of the peptide. Previous in silico work predicts the peptide to show a partially helical structure, but there is no experimental information on the structure of E40. Here, we use circular dichroism spectroscopy to report the secondary structure propensities of the reduced and oxidised forms of the E40 peptide in water, detergent micelles, and lipid vesicles composed of neutral and anionic lipids (POPC and POPG, respectively). Results indicate that the peptide is predominately a random coil in solution, and the disulphide bond has a small but measurable effect on peptide conformation. Secondary structure analysis shows large uncertainties and dependence on the reference data set and, in our system, cannot be used to accurately determine the secondary structure motifs of the peptide in membrane environments. Nevertheless, the spectra can be used to assess the relative changes in secondary structure propensities of the peptide depending on the solvent environment and disulphide bond. In POPC-POPG vesicles, the peptide transitions from a random coil towards a more structured conformation, which is even more pronounced in negatively charged SDS micelles. In vesicles, the effect depends on the peptide-lipid ratio, likely resulting from vesicle surface saturation. Further experiments with zwitterionic POPC vesicles and DPC micelles show that both curvature and negatively charged lipids can induce a change in conformation, with the two effects being cumulative. Electrostatic screening from Na+ ions reduced this effect. The oxidised form of the peptide shows a slightly lower propensity for secondary structure and retains a more random coil conformation even in the presence of PG-PC vesicles.


Assuntos
Dicroísmo Circular , Ebolavirus , Micelas , Estrutura Secundária de Proteína , Ebolavirus/química , Fosfatidilcolinas/química , Soluções , Fosfatidilgliceróis/química , Peptídeos/química , Água/química , Proteínas Virais/química , Sequência de Aminoácidos
3.
BMJ Open ; 14(9): e085962, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284693

RESUMO

BACKGROUND: In the UK, one in four patients are in work at the time of their hip or knee replacement surgery. These patients receive little support about their return to work (RTW). There is a need for an occupational support intervention that encourages safe and sustained RTW which can be integrated into National Health Service practice. We developed a two-arm intervention trial, based on a feasibility study, to assess whether an occupational support intervention (the OPAL (Occupational support for Patients undergoing Arthroplasty of the Lower limb) intervention) is effective in supporting a reduced time to full, sustained RTW compared with usual care in patients undergoing hip and knee replacement. METHODS AND ANALYSIS: This is a multicentre, individually randomised controlled superiority trial comparing the OPAL intervention to usual care. 742 working adults listed for elective primary hip or knee replacement, who intend to RTW, will be randomised to the OPAL intervention or usual care. The intervention comprises: (1) multimedia information resources; and (2) support from a designated RTW coordinator. The primary outcome is time until 'full' sustained RTW without sick leave for a consecutive 4-week period. Secondary outcomes are: time to any RTW, measures of functional recovery, number of 'sick days' between surgery and 'full' sustained RTW and the use of workplace modifications to facilitate their return. A health economic evaluation and a mixed methods process evaluation will assess cost-effectiveness and the implementation, fidelity and acceptability of the intervention, respectively. Outcomes will be collected at baseline, 3, 6, 9 and 12-month follow-up time points, as well as a monthly RTW questionnaire. ETHICS AND DISSEMINATION: Dissemination will focus on supporting the wider adoption and implementation of the intervention (if effective) and will target groups for whom the results will be relevant. This trial was approved by West Midlands-Edgbaston REC 23/WM/0013. TRIAL REGISTRATION NUMBER: ISRCTN13694911.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Retorno ao Trabalho , Humanos , Artroplastia do Joelho/reabilitação , Reino Unido , Artroplastia de Quadril/reabilitação , Artroplastia de Quadril/métodos , Análise Custo-Benefício
4.
iScience ; 27(9): 110773, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39314240

RESUMO

Autosomal-dominant polycystic kidney disease (ADPKD) is a common monogenic disease characterized by the formation of fluid-filled renal cysts, loss of mitochondrial function, decreased fatty acid oxidation, increased glycolysis, and likely renal failure. We previously demonstrated that inducing a state of ketosis ameliorates or reverses PKD progression in multiple animal models. In this study, we compare time-restricted feeding and 48-h periodic fasting regimens in both juvenile and adult Cy/+ rats. Both fasting regimens potently prevent juvenile disease progression and partially reverse PKD in adults. To explore the mechanism of fasting, we administered ß-hydroxybutyrate (BHB) to Cy/+ rats and orthologous mouse models of PKD (Pkd1 RC/RC , Pkd1-Ksp:Cre). BHB recapitulated the effects of fasting in these models independent of stereoisomer, suggesting the effects of BHB are largely due to its signaling functions. These findings implicate the use of ketogenic metabolic therapy and BHB supplementation as potential disease modifiers of PKD and point toward underlying mechanisms.

5.
Nucleic Acids Res ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315713

RESUMO

Base editing could correct nonsense mutations that cause cystic fibrosis (CF), but clinical development is limited by the lack of delivery methods that efficiently breach the barriers presented by airway epithelia. Here, we present a novel amphiphilic shuttle peptide based on the previously reported S10 peptide that substantially improved base editor ribonucleoprotein (RNP) delivery. Studies of the S10 secondary structure revealed that the alpha-helix formed by the endosomal leakage domain (ELD), but not the cell penetrating peptide (CPP), was functionally important for delivery. By isolating and extending the ELD, we created a novel shuttle peptide, termed S237. While S237 achieved lower delivery of green fluorescent protein, it outperformed S10 at Cas9 RNP delivery to cultured human airway epithelial cells and to pig airway epithelia in vivo, possibly due to its lower net charge. In well-differentiated primary human airway epithelial cell cultures, S237 achieved a 4.6-fold increase in base editor RNP delivery, correcting up to 9.4% of the cystic fibrosis transmembrane conductance regulator (CFTR) R553X allele and restoring CFTR channel function close to non-CF levels. These findings deepen the understanding of peptide-mediated delivery and offer a translational approach for base editor RNP delivery for CF airway disease.

6.
J Bacteriol ; : e0025624, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315796

RESUMO

Tuberculosis is caused by the bacterium Mycobacterium tuberculosis (Mtb). While eukaryotic species employ several specialized RNA polymerases (Pols) to fulfill the RNA synthesis requirements of the cell, bacterial species use a single RNA polymerase (RNAP). To contribute to the foundational understanding of how Mtb and the related non-pathogenic mycobacterial species, Mycobacterium smegmatis (Msm), perform the essential function of RNA synthesis, we performed a series of in vitro transcription experiments to define the unique enzymatic properties of Mtb and Msm RNAPs. In this study, we characterize the mechanism of nucleotide addition used by these bacterial RNAPs with comparisons to previously characterized eukaryotic Pols I, II, and III. We show that Mtb RNAP and Msm RNAP demonstrate similar enzymatic properties and nucleotide addition kinetics to each other but diverge significantly from eukaryotic Pols. We also show that Mtb RNAP and Msm RNAP uniquely bind a nucleotide analog with significantly higher affinity than canonical nucleotides, in contrast to eukaryotic RNA polymerase II. This affinity for analogs may reveal a vulnerability for selective inhibition of the pathogenic bacterial enzyme.IMPORTANCETuberculosis, caused by the bacterium Mycobacterium tuberculosis (Mtb), remains a severe global health threat. The World Health Organization (WHO) has reported that tuberculosis is second only to COVID-19 as the most lethal infection worldwide, with more annual deaths than HIV and AIDS (WHO.int). The first-line treatment for tuberculosis, Rifampin (or Rifampicin), specifically targets the Mtb RNA polymerase. This drug has been used for decades, leading to increased numbers of multi-drug-resistant infections (Stephanie, et al). To effectively treat tuberculosis, there is an urgent need for new therapeutics that selectively target vulnerabilities of the bacteria and not the host. Characterization of the differences between Mtb enzymes and host enzymes is critical to inform these ongoing drug design efforts.

7.
Blood ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316716

RESUMO

At least 25-35% of patients with large B cell lymphoma (LBCL) are not cured with frontline treatment, with generally poor subsequent outcomes. This motivates ongoing and intense interest in improving the frontline treatment of this disease. R-CHOP has remained the standard of care for 20 years despite dozens of trials aiming to improve upon this regimen, and only recently has a novel regimen (Pola-R-CHP) challenged its supremacy. Fortunately, at least 15 promising randomized trials evaluating new treatments in frontline LBCL treatment are underway. They differ not only in the therapy evaluated in the experimental arm, but in the choice of control arm, primary endpoint, and patient selection strategy, with some targeting specific biologic subtypes, some focusing on specific high-risk patient populations, and others enrolling older or frail patients. Novel response-adapted strategies leveraging circulating tumor DNA are also underway. While this variety of approaches provides a welcome increase in the overall likelihood of success, it will also present challenges if several of these trials are successful and we must choose among multiple potential treatment options that were not all tested in the same fashion. In this review, we summarize the main ongoing frontline randomized trials and discuss some of the questions that we will face in interpreting and applying their results in clinical practice in the next few years.

8.
J Mech Behav Biomed Mater ; 160: 106722, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39317096

RESUMO

The failure of polypropylene mesh is marked by significant side effects and debilitation, arising from a complex interplay of factors. One key contributor is the pronounced physico-mechanical mismatch between the polypropylene (PP) fibres and surrounding tissues, resulting in substantial physical damage, inflammation, and persistent pain. However, the primary cause of sustained inflammation due to polypropylene itself remains incompletely understood. This study comprises a comprehensive, multi-pronged investigation to unravel the effects of implantation on a presumed inert PP mesh in sheep. Employing both advanced and conventional techniques to discern the physical and chemical transformations of the implanted PP. Our analyses reveal a surface degradation and oxidation of polypropylene fibres after 60 days implantation, persisting and intensifying at the 180-day mark. The emergence and accumulation of PP debris in the tissue surrounding the implant also increased with implantation time. We demonstrate observable physical and mechanical alterations in the fibre surface and stiffness. Our study shows surface alterations which indicate that PP is evidently less chemically inert than was initially presumed. These findings underscore the need for a re-evaluation of the biocompatibility and long-term consequences of using PP mesh implants.

9.
Proc Biol Sci ; 291(2031): 20240934, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39317318

RESUMO

Infection duration affects individual host fitness and between-host transmission. Whether an infection is cleared or becomes chronic depends on the complex interaction between host immune responses and parasite growth. Empirical and theoretical studies have suggested that there are critical thresholds of parasite dose that can determine clearance versus chronicity, driven by the ability of the parasite to manipulate host immunity. However, the mammalian immune response is characterized by strong positive and negative feedback loops that could generate duration thresholds even in the absence of direct immunomodulation. Here, we derive and analyse a simple model for the interaction between T-cell subpopulations and parasite growth. We show that whether an infection is cleared or not is very sensitive to the initial immune state, parasite dose and strength of immunological feedbacks. In particular, chronic infections are possible even when parasites provoke a strong and effective immune response and lack any ability to immunomodulate. Our findings indicate that the initial immune state, which often goes unmeasured in empirical studies, is a critical determinant of infection duration. This work also has implications for epidemiological models, as it implies that infection duration will be highly variable among individuals, and dependent on each individual's infection history.


Assuntos
Interações Hospedeiro-Parasita , Animais , Modelos Imunológicos , Retroalimentação Fisiológica , Linfócitos T/imunologia
10.
J Fish Biol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300770

RESUMO

The taxonomy of the Parachela-Oxygaster-Macrochirichthys clade of Xenocyprididae has been confused since the original descriptions of Parachela oxygastroides and Parachela hypophthalmus in the mid-19th century. The confusion seems attributable to the substantial intraspecific variation in color and other morphological characteristics of species of Oxygaster and Parachela. Morphological data on 401 specimens from throughout the range of Parachela and molecular phylogenetic analyses indicate that six available species names for Parachela are valid: Parachela cyanea, P. hypophthalmus, Parachela ingerkongi, Parachela johorensis (removed from the synonymy of P. oxygastroides), P. oxygastroides, and Parachela williaminae. In addition, two new species of Parachela, Parachela melanosticta and Parachela microlepis, are described. Chela pointoni is a synonym of P. oxygastroides, not a valid species of Oxygaster as previously hypothesized, and Parachela maculicauda is a synonym of Parachela johorensis. Considerable morphological and genetic variation is present in all well-sampled species of Parachela.

11.
Pediatr Qual Saf ; 9(5): e769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301482

RESUMO

Introduction: Inflammatory markers (IMs) are often ordered in multiples, even though evidence suggests that this does not add any clinical benefit. The project aimed to reduce the number of duplicate IMs for patients by 10% in 12 months. Methods: We implemented a quality improvement (QI) project at our hospital, focusing on patients admitted to the pediatric hospital medicine service. The team chose the model for improvement as the QI methodology. Key interventions included ongoing provider education, integrating the project into the physician incentive plan, and reviewing disease-specific pathways. The primary outcome measure was "duplicate IM use," which was defined as any two or more IMs (procalcitonin, C-reactive protein, or erythrocyte sedimentation rate) obtained on the same patient within 24 hours. The secondary outcome measure was any IM use during their stay, and the balancing measures were average complete blood count use, hospital length of stay, and 7-day readmission rate. Results: The baseline duplicate IM use, and any IM use was 43% and 19%, respectively. After the start of this QI project, duplicate IM use decreased to 12%, and the use of any IM also decreased to 12%. Complete blood count use varied from 11% to 24% during the project without obvious correlation to IM use. Hospital length of stay decreased from 2.5 to 2.6 days, and the 7-day readmission rate remained at 2.8%. Conclusions: The duplicate IM use and IM use were decreased without a concurrent increase in the balancing measures, indicating that a safe reduction of IM testing is feasible in inpatient pediatric care.

12.
Proc Natl Acad Sci U S A ; 121(39): e2403222121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39302967

RESUMO

Algae mostly occur either as unicellular (microalgae) or multicellular (macroalgae) species, both being uninucleate. There are important exceptions, however, as some unicellular algae are multinucleate and macroscopic, some of which inhabit tropical seas and contribute to biocalcification and coral reef robustness. The evolutionary mechanisms and ecological significance of multinucleation and associated traits (e.g., rapid wound healing) are poorly understood. Here, we report the genome of Halimeda opuntia, a giant multinucleate unicellular chlorophyte characterized by interutricular calcification. We achieve a high-quality genome assembly that shows segregation into four subgenomes, with evidence for polyploidization concomitant with historical sea level and climate changes. We further find myosin VIII missing in H. opuntia and three other unicellular multinucleate chlorophytes, suggesting a potential mechanism that may underpin multinucleation. Genome analysis provides clues about how the unicellular alga could survive fragmentation and regenerate, as well as potential signatures for extracellular calcification and the coupling of calcification with photosynthesis. In addition, proteomic alkalinity shifts were found to potentially confer plasticity of H. opuntia to ocean acidification (OA). Our study provides crucial genetic information necessary for understanding multinucleation, cell regeneration, plasticity to OA, and different modes of calcification in algae and other organisms, which has important implications in reef conservation and bioengineering.


Assuntos
Calcificação Fisiológica , Calcificação Fisiológica/genética , Clorófitas/genética , Clorófitas/metabolismo , Filogenia , Genoma de Planta , Fotossíntese/genética
13.
J Clin Oncol ; : JCO2400119, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303189

RESUMO

Radiotherapy (RT) and transoral robotic surgery (TORS) are both curative-intent treatment options for oropharyngeal squamous cell carcinoma (OPSCC). Herein, we report the final outcomes of the ORATOR trial comparing these modalities, 5 years after enrollment completion. We randomly assigned 68 patients with T1-2N0-2 OPSCC to RT (with chemotherapy if node-positive) versus TORS plus neck dissection (± adjuvant RT/chemoradiation). The primary end point was swallowing quality of life (QOL) assessed with the MD Anderson Dysphagia Inventory (MDADI). Secondary end points included overall and progression-free survival (OS, PFS), adverse events (AEs), and other QOL metrics. The primary end point has been previously reported (Nichols 2019). In this report, the median follow-up was 5.1 years (IQR, 5.0-5.3 years). MDADI total scores converged by 5 years and were not significantly different across the follow-up period (P = .11). EORTC QLQ-C30 and H&N35 scores demonstrated differing profiles, including worse dry mouth in the RT arm (P = .032) and worse pain in the TORS arm (P = .002). Grade 2-5 AE rates did not differ between arms (91% [n = 31] v 97% [n = 33] respectively, P = .61), with more neutropenia and hearing loss in the RT arm, and more dysphagia and other pain in the TORS arm based on grades 2-5 (all P < .05). There were no differences in OS or PFS. In conclusion, toxicity and QOL profiles differ in some domains between RT and TORS, but oncologic outcomes were excellent in both arms. Choice of treatment should remain a shared decision between the patient and their providers.

14.
Mol Genet Metab ; 143(1-2): 108576, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39303318

RESUMO

PURPOSE: This study investigated the relationship between mucopolysaccharidosis II (MPS II) iduronate-2-sulfatase gene (IDS) variants and phenotypic characteristics, particularly cognitive impairment, using data from the Hunter Outcome Survey (HOS) registry. METHODS: HOS data for male patients (n = 650) aged ≥5 years at latest cognitive assessment with available genetic data were analyzed. Predefined genotype categories were used to classify IDS variants and report phenotypic characteristics by genotype. RESULTS: At their latest cognitive assessment, 411 (63.2%) of 650 patients had cognitive impairment. Missense variants were the most common MPS II genotype, with about equal frequency for patients with and patients without cognitive impairment. Complete deletions/large rearrangements were associated with cognitive impairment. Cognitive impairment and behavioral issues were most common, and height and weight abnormalities most apparent, in patients with large IDS structural changes. Broadly, missense variants NM-000202.8:c.998C>T p.(Ser333Leu), NM-000202.8:c.1402C>T p.(Arg468Trp), NM-000202.8:c.1403G>A p.(Arg468Gln) and NM-000202.8:c.262C>T p.(Arg88Cys), and splice site variant NM-000202.8:c.257C>T p.(Pro86Leu), were associated with cognitive impairment, and variants NM-000202.8:c.253G>A p.(Ala85Thr), NM-000202.8:c.187 A>G p.(Asn63Asp), NM-000202.8:c.1037C>T p.(Ala346Val), NM-000202.8:c.182C>T p.(Ser61Phe) and NM-000202.8:c.1122C>T were not. CONCLUSION: This analysis contributes toward the understanding of MPS II genotype-phenotype relationships, confirming and expanding on existing findings in a large, geographically diverse population.

16.
Acta Biomater ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303831

RESUMO

The evolution of arterial biomechanics and microstructure with age and disease plays a critical role in understanding the health and function of the cardiovascular system. Accurately capturing these adaptative processes and their effects on the mechanical environment is critical for predicting arterial responses. This challenge is exacerbated by the significant differences between elastic and muscular arteries, which have different structural organizations and functional demands. In this study, we aim to shed light to these adaptive processes by comparing the viscoelastic mechanics of autologous thoracic aortas (TA) and femoropopliteal arteries (FPA) in different age groups. We have extended our fractional viscoelastic framework, originally developed for FPA, to both types of arteries. To evaluate this framework, we analyzed experimental mechanical data from TA and FPA specimens from 21 individuals aged 13 to 73 years. Each specimen was subjected to a multi-ratio biaxial mechanical extension and relaxation test complemented by bidirectional histology to quantify the structural density and microstructural orientations. Our new constitutive model accurately captured the mechanical responses and microstructural differences of the tissues and closely matched the experimentally measured densities. It was found that the viscoelastic properties of collagen and smooth muscle cells (SMCs) in both the FPA and TA remained consistent with age, but the viscoelasticity of the SMCs in the FPA was twice that of the TA. Additionally, changes in collagen nonlinearity with age were similar in both TA and FPA. This model provides valuable insights into arterial mechanophysiology and the effects of pathological conditions on vascular biomechanics. STATEMENT OF SIGNIFICANCE: Developing durable treatments for arterial diseases necessitates a deeper understanding of how mechanical properties evolve with age in response to mechanical environments. In this work, we developed a generalized viscoelastic constitutive model for both elastic and muscular arteries and analyzed both the thoracic aorta (TA) and the femoropopliteal artery (FPA) from 21 donors aged 13 to 73. The derived parameters correlate well with histology, allowing further examination of how viscoelasticity evolves with age. Correlation between the TA and FPA of the same donors suggest that the viscoelasticity of the FPA may be influenced by the TA, necessitating more detailed analysis. In summary, our new model proves to be a valuable tool for studying arterial mechanophysiology and exploring pathological impacts.

17.
Rev Iberoam Micol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39304432

RESUMO

BACKGROUND: Early diagnosis of candidemia is critical for the correct management and treatment of patients. AIMS: To test the efficacy of different blood culture bottles in the growth of Candida strains. METHODS: We compared the performance of BD BACTEC™ Plus Aerobic/F (Aero) culture bottles with the specific BD BACTEC™ Mycosis IC/F Lytic (Myco) culture bottles using the BD BACTEC™ FX 40 automated blood culture system to determine the mean time-to-detection (TTD) in Candida species. One isolate each of six Candida species was inoculated into blood culture bottles (final concentration, 1-5CFUml-1) and incubated at 37°C until automated growth detection. RESULTS: Candida albicans and Nakaseomyces glabratus (Candida glabrata) were detected earlier in the specific culture bottle, whereas Candida tropicalis was detected earlier in the nonspecific bottle; Candida parapsilosis, Pichia kudriavzevii (Candida krusei), and Meyerozyma guilliermondii (Candida guilliermondii) presented similar TTD in both bottles. CONCLUSIONS: Our study suggests the suitability of using both bottles in clinical laboratories for a faster diagnosis and prompt starting of any treatment.

18.
J Biomed Mater Res A ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304971

RESUMO

Cell therapies harnessing the pro-vascular regenerative capacities of mesenchymal stromal cell (MSC) populations, including human adipose-derived stromal cells (hASCs), have generated considerable interest as an emerging treatment strategy for peripheral arterial disease (PAD) and its progression to critical limb ischemia (CLI). There is evidence to support that polysaccharide hydrogels can enhance therapeutic efficacy when applied as minimally-invasive delivery systems to support MSC survival and retention within ischemic tissues. However, there has been limited research to date on the effects of hydrogel composition on the phenotype and function of encapsulated cell populations. Recognizing this knowledge gap, this study compared the pro-angiogenic function of hASCs encapsulated in distinct but similarly-modified natural polysaccharide hydrogels composed of methacrylated glycol chitosan (MGC) and methacrylated hyaluronic acid (MHA). Initial in vitro studies confirmed high viability (>85%) of the hASCs following encapsulation and culture in the MGC and MHA hydrogels over 14 days, with a decrease in the cell density observed over time. Moreover, higher levels of a variety of secreted pro-angiogenic and immunomodulatory factors were detected in conditioned media samples collected from the hASCs encapsulated in the MGC-based hydrogels compared to the MHA hydrogels. Subsequent testing focused on comparing hASC delivery within the MGC and MHA hydrogels to saline controls in a femoral artery ligation-induced CLI (FAL-CLI) model in athymic nu/nu mice over 28 days. For the in vivo studies, the hASCs were engineered to express tdTomato and firefly luciferase to quantitatively compare the efficacy of the two platforms in supporting the localized retention of viable hASCs through longitudinal cell tracking with bioluminescence imaging (BLI). Interestingly, hASC retention was significantly enhanced when the cells were delivered in the MHA hydrogels as compared to the MGC hydrogels or saline. However, laser Doppler perfusion imaging (LDPI) indicated that the restoration of hindlimb perfusion was similar between the treatment groups and controls. These findings were corroborated by endpoint immunofluorescence (IF) staining showing similar levels of CD31+ cells in the ligated limbs at 28 days in all groups. Overall, this study demonstrates that enhanced MSC retention may be insufficient to augment vascular regeneration, emphasizing the complexity of designing biomaterials platforms for MSC delivery for therapeutic angiogenesis. In addition, the data points to a potential challenge in approaches that seek to harness the paracrine functionality of MSCs, as strategies that increase the secretion of immunomodulatory factors that can aid in regeneration may also lead to more rapid MSC clearance in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...