Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 82(12): 904-913, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28728677

RESUMO

BACKGROUND: The prefrontal cortex plays a critical role in regulating emotional behaviors, and dysfunction of prefrontal cortex-dependent networks has been broadly implicated in mediating stress-induced behavioral disorders including major depressive disorder. METHODS: Here we acquired multicircuit in vivo activity from eight cortical and limbic brain regions as mice were subjected to the tail suspension test (TST) and an open field test. We used a linear decoder to determine whether cellular responses across each of the cortical and limbic areas signal movement during the TST and open field test. We then performed repeat behavioral testing to identify which brain areas show cellular adaptations that signal the increase in immobility induced by repeat TST exposure. RESULTS: The increase in immobility observed during repeat TST exposure is linked to a selective functional upregulation of cellular activity in infralimbic cortex and medial dorsal thalamus, and to an increase in the spatiotemporal dynamic interaction between these structures. Inducing this spatiotemporal dynamic using closed-loop optogenetic stimulation is sufficient to increase movement in the TST in stress-naive mice, while stimulating above the carrier frequency of this circuit suppressed movement. This demonstrates that the adaptations in infralimbic cortex-medial dorsal thalamus circuitry observed after stress reflect a compensatory mechanism whereby the brain drives neural systems to counterbalance stress effects. CONCLUSIONS: Our findings provide evidence that targeting endogenous spatiotemporal dynamics is a potential therapeutic approach for treating stress-induced behavioral disorders, and that dynamics are a critical axis of manipulation for causal optogenetic studies.


Assuntos
Córtex Cerebral/fisiopatologia , Sistema Límbico/fisiopatologia , Estresse Psicológico/fisiopatologia , Potenciais de Ação , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Modelos Animais de Doenças , Reação de Fuga/fisiologia , Elevação dos Membros Posteriores , Masculino , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Microeletrodos , Atividade Motora , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Optogenética , Estimulação Luminosa , Fatores de Tempo
2.
Neuron ; 91(2): 439-52, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27346529

RESUMO

Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (<1 Hz) dynamics across these networks, and PFC dysfunction is implicated in stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Comportamento Animal/fisiologia , Emoções/fisiologia , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/patologia , Animais , Transtorno Depressivo Maior/fisiopatologia , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/patologia
3.
Nat Commun ; 7: 11459, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161151

RESUMO

Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4-22 (Δe4-22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4-22(-/-) mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Proteínas de Arcabouço Homer/metabolismo , Proteínas do Tecido Nervoso/deficiência , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Comportamento Animal , Córtex Cerebral/patologia , Corpo Estriado/patologia , Feminino , Humanos , Depressão Sináptica de Longo Prazo , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Modelos Neurológicos , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Deleção de Sequência , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...