Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Trends Parasitol ; 34(4): 263-265, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29433813

RESUMO

Chan et al. recently demonstrated that the antischistosomal drug praziquantel has a potent and specific interaction with human 5-HT2B receptors, and that the drug also elicits contraction of mouse mesenteric vasculature apparently mediated by the same receptor subtype We consider what this might mean about the drug's molecular therapeutic targets in both the worm and the host.


Assuntos
Praziquantel , Esquistossomicidas , Animais , Humanos , Camundongos
2.
Chem Biol Interact ; 263: 1-6, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986436

RESUMO

An outbreak of the southern cattle tick, Rhipicephalus (Boophilus) microplus, (Canestrini), in the United States would have devastating consequences on the cattle industry. Tick populations have developed resistance to current acaricides, highlighting the need to identify new biochemical targets along with new chemistry. Furthermore, acaricide resistance could further hamper control of tick populations during an outbreak. Botanically-based compounds may provide a safe alternative for efficacious control of the southern cattle tick. We have developed a heterologous expression system that stably expresses the cattle tick's tyramine receptor with a G-protein chimera, producing a system that is amenable to high-throughput screening. Screening an in-house terpenoid library, at two screening concentrations (10 µM and 100 µM), has identified four terpenoids (piperonyl alcohol, 1,4-cineole, carvacrol and isoeugenol) that we believe are positive modulators of the southern cattle tick's tyramine receptor.


Assuntos
Acaricidas/metabolismo , Óleos Voláteis/química , Receptores de Amina Biogênica/metabolismo , Terpenos/metabolismo , Carrapatos/enzimologia , Acaricidas/química , Acaricidas/toxicidade , Animais , Células CHO , Bovinos , Cricetinae , Cricetulus , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica , Receptores de Amina Biogênica/antagonistas & inibidores , Receptores de Amina Biogênica/genética , Terpenos/química , Terpenos/toxicidade , Carrapatos/efeitos dos fármacos
3.
J Bacteriol Parasitol ; 7(5)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28066686

RESUMO

The objective of this study was to investigate an interaction between nematodes and gut Enterobacteriaceae that use benzimidazoles as a carbon source. By addressing this objective, we identified an anthelmintic resistance-like mechanism for gastrointestinal nematodes. We isolated 30 gut bacteria (family Enterobacteriaceae) that subsist on and putatively catabolize benzimidazole-class anthelmintics. C. elegans was protected from the effects of benzimidazoles when co-incubated with these Enterobacteriaceae that also protect adult ascarids from the effects of albendazole. This bacterial phenotype represents a novel mechanism by which gastrointestinal nematodes are potentially spared from the effects of benzimidazoles, without any apparent fitness cost to the parasite.

4.
Mol Biochem Parasitol ; 202(1): 29-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26365538

RESUMO

The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor's basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR-like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting.


Assuntos
Receptores Colinérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Schistosoma mansoni/metabolismo , Acetilcolina/metabolismo , Animais , Antiparasitários/farmacologia , Atropina/farmacologia , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Antagonistas Colinérgicos/farmacologia , DNA de Helmintos/genética , DNA de Helmintos/metabolismo , Feminino , Larva/efeitos dos fármacos , Larva/metabolismo , Camundongos , Atividade Motora/fisiologia , Prometazina/farmacologia , Conformação Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Análise de Sequência de DNA
5.
PLoS Negl Trop Dis ; 9(9): e0004069, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26401956

RESUMO

Lymphatic filariasis (LF) is a socio-economically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30-120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed new therapeutic strategies and unearth stage-specific diagnostic biomarkers.


Assuntos
Brugia Malayi/metabolismo , Exossomos/química , Exossomos/metabolismo , Pequeno RNA não Traduzido/análise , Animais , Linhagem Celular , Exossomos/ultraestrutura , Proteínas de Helminto/análise , Macrófagos/imunologia , Microscopia Eletrônica , Fagocitose
6.
Insect Biochem Mol Biol ; 63: 47-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25958152

RESUMO

The southern cattle tick (Rhipicephalus (Boophilus) microplus) is a hematophagous external parasite that vectors the causative agents of bovine babesiosis or cattle tick fever, Babesia bovis and B. bigemina, and anaplasmosis, Anaplasma marginale. The southern cattle tick is a threat to the livestock industry in many locations throughout the world. Control methods include the use of chemical acaricides including amitraz, a formamidine insecticide, which is proposed to activate octopamine receptors. Previous studies have identified a putative octopamine receptor from the southern cattle tick in Australia and the Americas. Furthermore, this putative octopamine receptor could play a role in acaricide resistance to amitraz. Recently, sequence data indicated that this putative octopamine receptor is probably a type-1 tyramine receptor (TAR1). In this study, the putative TAR1 was heterologously expressed in Chinese hamster ovary (CHO-K1) cells, and the expressed receptor resulted in a 39-fold higher potency for tyramine compared to octopamine. Furthermore, the expressed receptor was strongly antagonized by yohimbine and cyproheptadine, and mildly antagonized by mianserin and phentolamine. Tolazoline and naphazoline had agonistic or modulatory activity against the expressed receptor, as did the amitraz metabolite, BTS-27271; however, this was only observed in the presence of tyramine. The southern cattle tick's tyramine receptor may serve as a target for the development of anti-parasitic compounds, in addition to being a likely target of formamidine insecticides.


Assuntos
Receptores de Amina Biogênica/metabolismo , Rhipicephalus/metabolismo , Tiramina/metabolismo , Acaricidas/farmacologia , Amidinas/farmacologia , Animais , Células CHO , Cricetulus , Ciproeptadina/farmacologia , Octopamina/metabolismo , Receptores de Amina Biogênica/antagonistas & inibidores , Toluidinas/farmacologia , Ioimbina/farmacologia
7.
Parasit Vectors ; 8: 34, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600302

RESUMO

BACKGROUND: Neglected diseases caused by helminth infections impose a massive hindrance to progress in the developing world. While basic research on parasitic flatworms (platyhelminths) continues to expand, researchers have yet to broadly adopt a free-living model to complement the study of these important parasites. METHODS: We report the high-coverage sequencing (RNA-Seq) and assembly of the transcriptome of the planarian Girardia tigrina across a set of dynamic conditions. The assembly was annotated and extensive orthology analysis was used to seed a pipeline for the rational prioritization and validation of putative anthelmintic targets. A small number of targets conserved between parasitic and free-living flatworms were comparatively interrogated. RESULTS: 240 million paired-end reads were assembled de novo to produce a strictly filtered predicted proteome consisting of over 22,000 proteins. Gene Ontology annotations were extended to 16,467 proteins. 2,693 sequences were identified in orthology groups spanning flukes, tapeworms and planaria, with 441 highlighted as belonging to druggable protein families. Chemical inhibitors were used on three targets in pharmacological screens using both planaria and schistosomula, revealing distinct motility phenotypes that were shown to correlate with planarian RNAi phenotypes. CONCLUSIONS: This work provides the first comprehensive and annotated sequence resource for the model planarian G. tigrina, alongside a prioritized list of candidate drug targets conserved among parasitic and free-living flatworms. As proof of principle, we show that a simple RNAi and pharmacology pipeline in the more convenient planarian model system can inform parasite biology and serve as an efficient screening tool for the identification of lucrative anthelmintic targets.


Assuntos
Descoberta de Drogas/métodos , Planárias/genética , Transcriptoma/genética , Animais , Anti-Helmínticos/farmacologia , Sequência de Bases , Avaliação Pré-Clínica de Medicamentos/métodos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Interferência de RNA , Análise de Sequência de RNA , Especificidade da Espécie , Transcriptoma/efeitos dos fármacos
8.
PLoS Pathog ; 10(6): e1004181, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945827

RESUMO

Acetylcholine is the canonical excitatory neurotransmitter of the mammalian neuromuscular system. However, in the trematode parasite Schistosoma mansoni, cholinergic stimulation leads to muscle relaxation and a flaccid paralysis, suggesting an inhibitory mode of action. Information about the pharmacological mechanism of this inhibition is lacking. Here, we used a combination of techniques to assess the role of cholinergic receptors in schistosome motor function. The neuromuscular effects of acetylcholine are typically mediated by gated cation channels of the nicotinic receptor (nAChR) family. Bioinformatics analyses identified numerous nAChR subunits in the S. mansoni genome but, interestingly, nearly half of these subunits carried a motif normally associated with chloride-selectivity. These putative schistosome acetylcholine-gated chloride channels (SmACCs) are evolutionarily divergent from those of nematodes and form a unique clade within the larger family of nAChRs. Pharmacological and RNA interference (RNAi) behavioral screens were used to assess the role of the SmACCs in larval motor function. Treatment with antagonists produced the same effect as RNAi suppression of SmACCs; both led to a hypermotile phenotype consistent with abrogation of an inhibitory neuromuscular mediator. Antibodies were then generated against two of the SmACCs for use in immunolocalization studies. SmACC-1 and SmACC-2 localize to regions of the peripheral nervous system that innervate the body wall muscles, yet neither appears to be expressed directly on the musculature. One gene, SmACC-1, was expressed in HEK-293 cells and characterized using an iodide flux assay. The results indicate that SmACC-1 formed a functional homomeric chloride channel and was activated selectively by a panel of cholinergic agonists. The results described in this study identify a novel clade of nicotinic chloride channels that act as inhibitory modulators of schistosome neuromuscular function. Additionally, the iodide flux assay used to characterize SmACC-1 represents a new high-throughput tool for drug screening against these unique parasite ion channels.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Agonistas Colinérgicos/farmacologia , Atividade Motora/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Schistosoma mansoni/metabolismo , Acetilcolina/metabolismo , Animais , Anti-Helmínticos/uso terapêutico , Linhagem Celular , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Células HEK293 , Humanos , Atividade Motora/genética , Praziquantel/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno , Receptores Colinérgicos/genética , Receptores Nicotínicos/genética , Schistosoma mansoni/genética , Esquistossomose/tratamento farmacológico , Esquistossomose/patologia
9.
EuPA Open Proteom ; 3: 262-272, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26366373

RESUMO

FMRFamide-like peptide (FLP) receptors are appealing as putative anthelmintic targets. To date, 31 flp-encoding genes have been identified in Caenorhabditis elegans and thirteen FLP-activated G-protein coupled receptors (FLP-GPCRs) have been reported. The lack of knowledge on FLPs and FLP-GPCRs in parasites impedes their functional characterisation and chemotherapeutic exploitation. Using homology-based BLAST searches and phylogenetic analyses this study describes the identification of putative flp and flp-GPCR gene homologues in 17 nematode parasites providing the first pan-phylum genome-based overview of the FLPergic complement. These data will facilitate FLP-receptor deorphanisation efforts in the quest for novel control targets for nematode parasites.

10.
Eukaryot Cell ; 12(11): 1433-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23975887

RESUMO

Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.


Assuntos
Entamoeba histolytica/metabolismo , Lipopolissacarídeos/farmacologia , Fagocitose , Proteínas de Protozoários/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Entamoeba histolytica/efeitos dos fármacos , Entamoeba histolytica/microbiologia , Escherichia coli/patogenicidade , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Protozoários/química , Receptores Acoplados a Proteínas G/química , Suramina/farmacologia
11.
Nature ; 496(7443): 57-63, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23485966

RESUMO

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Assuntos
Adaptação Fisiológica/genética , Cestoides/genética , Genoma Helmíntico/genética , Parasitos/genética , Animais , Evolução Biológica , Cestoides/efeitos dos fármacos , Cestoides/fisiologia , Infecções por Cestoides/tratamento farmacológico , Infecções por Cestoides/metabolismo , Sequência Conservada/genética , Echinococcus granulosus/genética , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Genes de Helmintos/genética , Genes Homeobox/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Hymenolepis/genética , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular , Parasitos/efeitos dos fármacos , Parasitos/fisiologia , Proteoma/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Taenia solium/genética
12.
PLoS Pathog ; 9(2): e1003169, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23468621

RESUMO

Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR.


Assuntos
FMRFamida/genética , Inativação Gênica , Proteínas de Helminto/genética , Receptores Acoplados a Proteínas G/genética , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/metabolismo , FMRFamida/metabolismo , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Patógeno/genética , Ligantes , Moduladores de Transporte de Membrana/metabolismo , Dados de Sequência Molecular , Movimento , Doenças das Plantas/parasitologia , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Solanum tuberosum/metabolismo
13.
PLoS One ; 7(7): e40787, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815820

RESUMO

G protein-coupled receptors (GPCRs) represent the largest known superfamily of membrane proteins extending throughout the Metazoa. There exists ample motivation to elucidate the functional properties of GPCRs given their role in signal transduction and their prominence as drug targets. In many target organisms, these efforts are hampered by the unreliable nature of heterologous receptor expression platforms. We validate and describe an alternative loss-of-function approach for ascertaining the ligand and G protein coupling properties of GPCRs in their native cell membrane environment. Our efforts are focused on the phylum Platyhelminthes, given the heavy health burden exacted by pathogenic flatworms, as well as the role of free-living flatworms as model organisms for the study of developmental biology. RNA interference (RNAi) was used in conjunction with a biochemical endpoint assay to monitor cAMP modulation in response to the translational suppression of individual receptors. As proof of principle, this approach was used to confirm the neuropeptide GYIRFamide as the cognate ligand for the planarian neuropeptide receptor GtNPR-1, while revealing its endogenous coupling to Gα(i/o). The method was then extended to deorphanize a novel Gα(s)-coupled planarian serotonin receptor, DtSER-1. A bioinformatics protocol guided the selection of receptor candidates mediating 5-HT-evoked responses. These results provide functional data on a neurotransmitter central to flatworm biology, while establishing the great potential of an RNAi-based deorphanization protocol. Future work can help optimize and adapt this protocol for higher-throughput platforms as well as other phyla.


Assuntos
Planárias/metabolismo , Interferência de RNA , Receptores de Serotonina/metabolismo , Sequência de Aminoácidos , Animais , Monoaminas Biogênicas/metabolismo , Biologia Computacional , AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Ligantes , Dados de Sequência Molecular , Peptídeos/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Receptores de Serotonina/química , Receptores de Serotonina/genética , Alinhamento de Sequência
14.
Vet J ; 192(3): 535-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21798771

RESUMO

This study assessed the capacity of ß-lactam antibiotics to prevent salmonella-mediated encephalopathy in calves given the putative neuroprotective effects of these drugs of increasing glutamate export from the brain. Both ampicillin and ceftiofur prevented the development of encephalopathy despite resistance of the inoculated Salmonella enterica serovar Saint-Paul isolate to both drugs. A glutamate receptor antagonist also prevented this salmonella-mediated encephalopathy. Glutamate exporters were hyper-expressed in the presence of ß-lactam antibiotics while a glutamate export inhibitor obviated the effects of these antibiotics, demonstrating a neuroprotective effect through glutamate export from the brain. The findings indicate that ß-lactam antibiotics remain an important treatment option for this atypical form of bovine salmonellosis.


Assuntos
Antibacterianos/farmacologia , Encefalopatias/veterinária , Doenças dos Bovinos/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella enterica/efeitos dos fármacos , beta-Lactamas/farmacologia , Animais , Encefalopatias/microbiologia , Encefalopatias/prevenção & controle , Bovinos , Resistência beta-Lactâmica
15.
BMC Genomics ; 12: 596, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22145649

RESUMO

BACKGROUND: G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum. RESULTS: Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification. CONCLUSIONS: Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.


Assuntos
Planárias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Schistosoma mansoni/metabolismo , Animais
16.
PLoS Negl Trop Dis ; 5(6): e1176, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21666793

RESUMO

While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Helminto/biossíntese , Proteínas de Helminto/genética , Nematoides/genética , Interferência de RNA , Animais , Sequência Conservada
17.
Parasit Vectors ; 4: 123, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21711539

RESUMO

BACKGROUND: Schistosomes are parasitic helminths that infect humans through dermo-invasion while in contaminated water. Salmonella are also a common water-borne human pathogen that infects the gastrointestinal tract via the oral route. Both pathogens eventually enter the systemic circulation as part of their respective disease processes. Concurrent Schistosoma-Salmonella infections are common and are complicated by the bacteria adhering to adult schistosomes present in the mesenteric vasculature. This interaction provides a refuge in which the bacterium can putatively evade antibiotic therapy and anthelmintic monotherapy can lead to a massive release of occult Salmonella. RESULTS: Using a novel antibiotic protection assay, our results reveal that Schistosoma-associated Salmonella are refractory to eight different antibiotics commonly used to treat salmonellosis. The efficacy of these antibiotics was decreased by a factor of 4 to 16 due to this association. Salmonella binding to schistosomes occurs via a specific fimbrial protein (FimH) present on the surface on the bacterium. This same fimbrial protein confers the ability of Salmonella to bind to mammalian cells. CONCLUSIONS: Salmonella can evade certain antibiotics by binding to Schistosoma. As a result, effective bactericidal concentrations of antibiotics are unfortunately above the achievable therapeutic levels of the drugs in co-infected individuals. Salmonella-Schistosoma binding is analogous to the adherence of Salmonella to cells lining the mammalian intestine. Perturbing this binding is the key to eliminating Salmonella that complicate schistosomiasis.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana , Farmacorresistência Bacteriana , Salmonella/efeitos dos fármacos , Salmonella/fisiologia , Schistosoma/microbiologia , Animais , Feminino , Humanos , Masculino , Camundongos , Viabilidade Microbiana/efeitos dos fármacos
18.
Adv Exp Med Biol ; 692: 78-97, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21189675

RESUMO

Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping ofpeptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points to neuropeptidergic signaling as a very promising field from which to harvest future drug targets.


Assuntos
Helmintos/fisiologia , Neuropeptídeos/fisiologia , Sequência de Aminoácidos , Animais , Ascaris/fisiologia , Locomoção , Músculo Esquelético/fisiologia , Nematoides/fisiologia , Neuropeptídeos/química , Platelmintos/fisiologia , Postura
19.
Am J Vet Res ; 71(10): 1170-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20919903

RESUMO

OBJECTIVE: To assess in pigs the pathogenicity and virulence of 3 strains of Salmonella spp capable of causing atypical salmonellosis in cattle. ANIMALS: 36 Holstein calves and 72 pigs experimentally infected with Salmonella spp. PROCEDURES: Representative Salmonella strains associated with 3 new disease phenotypes (protozoa-mediated hypervirulence, multisystemic cytopathicity, and encephalopathy) that have been characterized in cattle during the past 10 years were orally inoculated into pigs. Clinical manifestations were compared with those observed in cattle. Samples were collected from various tissues, and the presence of Salmonella organisms was assessed qualitatively and quantitatively by use of Salmonella-selective media. RESULTS: Of the 3 unique Salmonella disease phenotypes observed in cattle, only protozoa-mediated hypervirulence was observed in pigs. Hypervirulence was related to a more rapid onset of disease and higher pathogen burden in pigs than in cattle. This phenotype was observed in pigs inoculated with multiresistant Salmonella enterica serotypes Typhimurium or Choleraesuis bearing the Salmonella genomic island 1 (SGI1) integron. CONCLUSIONS AND CLINICAL RELEVANCE: Salmonella hypervirulence was identified in pigs noculated with SGI1-bearing strains exposed to free-living protozoa. Additionally, an SGI1-bearing strain of Salmonella Choleraesuis was detected that resulted in augmented virulence in pigs. Therefore, it appeared that protozoa-associated salmonellosis was analogous in pigs and cattle. Salmonella-mediated encephalopathy and multisystemic cytopathicity did not appear to be relevant diseases in pigs.


Assuntos
Doenças dos Bovinos/microbiologia , Salmonelose Animal/microbiologia , Salmonella/classificação , Salmonella/patogenicidade , Doenças dos Suínos/microbiologia , Animais , Bovinos , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Masculino , Salmonella/metabolismo , Suínos , Virulência
20.
PLoS Negl Trop Dis ; 4(8): e790, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20706630

RESUMO

Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca(2+) influx through sarcolemmal voltage operated Ca(2+) channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 microM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31-8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 microM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca(2+) influx through VOCC currents using a PKC-dependent pathway.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Contração Muscular , Peptídeos/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...