Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(4-1): 044501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755880

RESUMO

The electromechanical response of polymeric soft matter to applied electric fields is of fundamental scientific interest as well as relevant to technologies for sensing and actuation. Several existing theoretical and numerical approaches for polarizable polymers subject to a combined applied electric field and stretch are based on discrete monomer models. In these models, accounting for the interactions between the induced dipoles on monomers is challenging due to the nonlocality of these interactions. On the other hand, the framework of statistical field theory provides a continuous description of polymer chains that potentially enables a tractable way to account for these interactions. However, prior formulations using this framework have been restricted to the case of weak anisotropy of the monomer polarizability. This paper formulates a general approach based in the framework of statistical field theory to account for the nonlocal nature of the dipolar interactions without any restrictions on the anisotropy or nonlinearity of the polarizability of the monomer. The approach is based on three key elements: (1) the statistical field theory framework, in which the discrete monomers are regularized to a continuous dipole distribution, (2) a replacement of the nonlocal dipole-dipole interactions by the local electrostatics partial differential equation with the continuous dipole distribution as the forcing, and (3) the use of a completely general relation between the polarization and the local electric field. Rather than treat the dipole-dipole interactions directly, the continuous description in the field theory enables the computationally tractable nonlocal-to-local transformation. Further, it enables the use of a realistic statistical-mechanical ensemble wherein the average far-field applied electric field is prescribed, rather than prescribing the applied field at every point in the polymer domain. The model is applied, using the finite element method, to study the electromechanical response of a polymer chain in the ensemble with fixed far-field applied electric field and fixed chain stretch. The nonlocal dipolar interactions are found to increase, over the case where dipole-dipole interactions are neglected, the magnitudes of the polarization and electric field by orders of magnitude as well as significantly change their spatial distributions. Next, the effect of the relative orientation between the applied field and the chain on the local electric field and polarization is studied. The model predicts that the elastic response of the polymer chain is linear, consistent with the Gaussian approximation, and largely unchanged by the orientation of the applied electric field, though the polarization and local electric field distributions are significantly impacted.

2.
Soft Matter ; 19(45): 8764-8778, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37938345

RESUMO

Liquid crystalline elastomers (LCEs) are active materials that are of interest due to their programmable response to various external stimuli such as light and heat. When exposed to these stimuli, the anisotropy in the response of the material is governed by the nematic director, which is a continuum parameter that is defined as the average local orientation of the mesogens in the liquid crystal phase. This nematic director can be programmed to be heterogeneous in space, creating a vast design space that is useful for applications ranging from artificial ligaments to deployable structures to self-assembling mechanisms. Even when specialized to long and thin strips of LCEs - the focus of this work - the vast design space has required the use of numerical simulations to aid in experimental discovery. To mitigate the computational expense of full 3-d numerical simulations, several dimensionally-reduced rod and ribbon models have been developed for LCE strips, but these have not accounted for the possibility of initial transverse curvature, like carpenter's tape spring. Motivated by recent experiments showing that transversely-curved LCE strips display a rich variety of configurations, this work derives a dimensionally-reduced 1-d model for pre-curved LCE strips. The 1-d model is validated against full 3-d finite element calculations, and it is also shown to capture experimental observations, including tape-spring-like localizations, in activated LCE strips.

3.
Phys Rev E ; 107(6-1): 064501, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464704

RESUMO

Polymer networks formed by cross linking flexible polymer chains are ubiquitous in many natural and synthetic soft-matter systems. Current micromechanics models generally do not account for excluded volume interactions except, for instance, through imposing a phenomenological incompressibility constraint at the continuum scale. This work aims to examine the role of excluded volume interactions on the mechanical response. The approach is based on the framework of the self-consistent statistical field theory of polymers, which provides an efficient mesoscale approach that enables the accounting of excluded volume effects without the expense of large-scale molecular modeling. A mesoscale representative volume element is populated with multiple interacting chains, and the macroscale nonlinear elastic deformation is imposed by mapping the end-to-end vectors of the chains by this deformation. In the absence of excluded volume interactions, it recovers the closed-form results of the classical theory of rubber elasticity. With excluded volume interactions, the model is solved numerically in three dimensions using a finite element method to obtain the energy, stresses, and linearized moduli under imposed macroscale deformation. Highlights of the numerical study include: (i) the linearized Poisson's ratio is very close to the incompressible limit without a phenomenological imposition of incompressibility; (ii) despite the harmonic Gaussian chain as a starting point, there is an emergent strain-softening and strain-stiffening response that is characteristic of real polymer networks, driven by the interplay between the entropy and the excluded volume interactions; and (iii) the emergence of a deformation-sensitive localization instability at large excluded volumes.

4.
Nat Mater ; 22(1): 18-35, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446962

RESUMO

Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.


Assuntos
Materiais Biomiméticos , Nanocompostos , Materiais Biomiméticos/química , Nanocompostos/química , Água/química
5.
Phys Rev E ; 103(4-1): 042504, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34006015

RESUMO

Statistical mechanics is an important tool for understanding polymer electroelasticity because the elasticity of polymers is primarily due to entropy. However, a common approach for the statistical mechanics of polymer chains, the Gaussian chain approximation, misses key physics. By considering the nonlinearities of the problem, we show a strong coupling between the deformation of a polymer chain and its dielectric response, that is, its net dipole. When chains with this coupling are cross linked in an elastomer network and an electric field is applied, the field breaks the symmetry of the elastomer's elastic properties and, combined with electrostatic torque and incompressibility, leads to intrinsic electrostriction. Conversely, deformation can break the symmetry of the dielectric response, leading to volumetric torque and asymmetric actuation. Both phenomena have important implications for designing high-efficiency soft actuators and soft electroactive materials, and the presence of mechanisms for volumetric torque, in particular, can be used to develop higher degree of freedom actuators and to achieve bioinspired locomotion.

6.
Soft Matter ; 17(5): 1258-1266, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33283820

RESUMO

Contactless actuation powered using light is shown to generate torque densities approaching 10 N m kg-1 at angular velocities ∼102 rad s-1: metrics that compare favorably against tethered electromechanical systems. This is possible even though the extinction of actinic light limits the characteristic thickness of photoresponse in polymers to tens of µm. Confinement of molecularly patterned developable shells fabricated from azobenzene-functionalized liquid crystalline polymers encodes torque-dense photoactuation. Photostrain gradients from unstructured irradiation segment this geometry into two oppositely curved regions connected by a curved crease. A monolithic curved shell spontaneously bifurcates into a jointed, arm-like mechanism that generates flexure over sweep angles exceeding a radian. Strain focusing at the crease is hierarchical: an integral crease nucleates at smaller magnitudes of the prebiased curvature, while a crease decorated with point-like defects emerges at larger curvatures. The phase-space of morphogenesis is traceable to the competition between stretch and bending energies and is parameterizable as a function of the geometry. The framework for generating repetitive torque-dense actuation from slender light-powered actuators holds broader implications for the design of soft, remotely operated machines. Here, it is harnessed in illustrative mechanisms including levers, lifters and grabbers that are powered and regulated exclusively using light.

7.
Soft Matter ; 16(38): 8818-8825, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32724964

RESUMO

Elastomers embedded with micro- and nanoscale droplets of liquid metal (LM) alloys like eutectic gallium-indium (EGaIn) can exhibit unique combinations of elastic, thermal, and electrical properties that are difficult to achieve using rigid filler. For composites with sufficient concentrations of liquid metal, the LM droplets can form percolating networks that conduct electricity and deform with the surrounding elastomer as the composite is stretched. Surprisingly, experimental measurements performed on LM-embedded elastomers (LMEEs) show that the total electrical resistance of the composite increases only slightly even as the elastomer is stretched to several times its natural length. In contrast, Pouillet's law would predict an exponential increase in resistance (Ω) with stretch (λ) due to the incompressibility of liquid metal and elastomer. In this manuscript, we perform a computational analysis to examine the unique electromechanical properties of conductive LMEE composites. Our analysis suggests that the gauge factor that quantifies electromechanical coupling (i.e. G = {ΔΩ/Ω0}/λ) decreases with increasing tortuosity of the conductive pathways formed by the connected LM droplets. A dimensionless parameter for path tortuosity can be used to estimate G for statistically homogeneous LMEE composites. These results rationalize experimental observations and provide insight into the influence of liquid metal droplet assembly on the functionality of the composite.

8.
Soft Matter ; 16(27): 6265-6284, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32530003

RESUMO

Polymeric materials that couple deformation and electrostatics have the potential for use in soft sensors and actuators with applications ranging from robotic, biomedical, energy, aerospace and automotive technologies. In contrast to the mechanics of polymers that has been studied using statistical mechanics approaches for decades, the coupled response under deformation and electrical field has largely been modeled only phenomenologically at the continuum scale. In this work, we examine the physics of the coupled deformation and electrical response of an electrically-responsive polymer chain using statistical mechanics. We begin with a simple anisotropic model for the electrostatic dipole response to electric field of a single monomer, and use a separation of energy scales between the electrostatic field energy and the induced dipole field energy to reduce the nonlocal and infinite-dimensional statistical averaging to a simpler local finite-dimensional averaging. In this simplified setting, we derive the equations of the most likely monomer orientation density using the maximum term approximation, and a chain free energy is derived using this approximation. These equations are investigated numerically and the results provide insight into the physics of electromechanically coupled elastomer chains. Closed-form approximations are also developed in the limit of small electrical energy with respect to thermal energy; in the limit of small mechanical tension force acting on the chain; and using asymptotic matching for general chain conditions.

9.
J Mech Phys Solids ; 141: 103974, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32461703

RESUMO

Clustering of ligand-binding receptors of different types on thickened isles of the cell membrane, namely lipid rafts, is an experimentally observed phenomenon. Although its influence on cell's response is deeply investigated, the role of the coupling between mechanical processes and multiphysics involving the active receptors and the surrounding lipid membrane during ligand-binding has not yet been understood. Specifically, the focus of this work is on G-protein-coupled receptors (GPCRs), the widest group of transmembrane proteins in animals, which regulate specific cell processes through chemical signalling pathways involving a synergistic balance between the cyclic Adenosine Monophosphate (cAMP) produced by active GPCRs in the intracellular environment and its efflux, mediated by the Multidrug Resistance Proteins (MRPs) transporters. This paper develops a multiphysics approach based on the interplay among energetics, multiscale geometrical changes and mass balance of species, i.e. active GPCRs and MRPs, including diffusion and kinetics of binding and unbinding. Because the obtained energy depends upon both the kinematics and the changes of species densities, balance of mass and of linear momentum are coupled and govern the space-time evolution of the cell membrane. The mechanobiology involving remodelling and change of lipid ordering of the cell membrane allows to predict dynamics of transporters and active receptors -in full agreement with experimentally observed cAMP levels- and how the latter trigger rafts formation and cluster on such sites. Within the current scientific debate on Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) and on the basis of the ascertained fact that lipid rafts often serve as an entry port for viruses, it is felt that approaches accounting for strong coupling among mechanobiological aspects could even turn helpful in better understanding membrane-mediated phenomena such as COVID-19 virus-cell interaction.

10.
Soft Matter ; 15(2): 262-277, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30543261

RESUMO

A temperature variation can electrically polarize a pyroelectric material. In its converse manifestation, the electrocaloric effect entails a change in temperature due to the application of an electric field. These phenomena have wide applications ranging from infrared detection sensors and solid-state refrigeration to energy harvesting. However, the pyroelectric-electrocaloric effect is typically observed in certain classes of hard, brittle crystalline materials that must satisfy a stringent set of lattice symmetry conditions. Some limited experiments have however demonstrated that embedding immobile charges and dipoles in soft foams (thus creating an electret state) may lead to a pyroelectric-like response as well as large deformations desired from soft matter. In this work, we develop a systematic theory for coupled electrical, thermal and mechanical responses of soft electrets. Using simple illustrative examples, we derive closed-form explicit expressions for the pyroelectric and electrocaloric coefficients of electrets. While pyroelectricity in electrets has been noted before, our derived expressions provide a clear quantitative basis to interpret (and eventually design) this effect as well as insights into how the geometrically nonlinear deformation and Maxwell stress give rise to its emergence. We present conditions to obtain a larger pyroelectric and electrocaloric response. In particular, the electrocaloric effect is predicted for the first time in such materials and we show that a proper design and a reasonable choice of materials can lead to a temperature reduction of as much as 1.5 K under the application of electrical fields of 10 MV cm-1.

11.
J Chem Theory Comput ; 13(6): 2945-2953, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28418668

RESUMO

The behavior of large, complex molecules in the presence of magnetic fields is experimentally challenging to measure and computationally intensive to predict. This work proposes a novel, mixed-methods approach for efficiently computing the principal magnetic susceptibilities and diamagnetic anisotropy of membrane proteins. The hierarchical primary (amino acid), secondary (α helical and ß sheet), and tertiary (α helix and ß barrel) structure of transmembrane proteins enables analysis of a complex molecule using discrete subunits of varying size and resolution. The proposed method converts the magnetic susceptibility tensor for all protein subunits to a unit coordinate system and sums them to build the magnetic susceptibility tensor for the membrane protein. Using this approach, we calculate the diamagnetic anisotropy for all transmembrane proteins of known structure and investigate the effect of different subunit resolutions on the resulting predictions of diamagnetic anisotropy. We demonstrate that amino acid residues with aromatic side groups exhibit higher diamagnetic anisotropies. On average, high percentages of aromatic amino acid subunits, a ß barrel tertiary structure, and a small volume are correlated with high volumetric diamagnetic anisotropy. Finally, we demonstrate that accounting for the spatial position of the residues with respect to one another is critical to accurately computing the magnetic properties of the complex protein molecule.


Assuntos
Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Anisotropia , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
12.
J Am Chem Soc ; 138(1): 28-31, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26677866

RESUMO

Two-dimensional (2D) alignment and crystallization of membrane proteins (MPs) is increasingly important in characterizing their three-dimensional (3D) structure, in designing pharmacological agents, and in leveraging MPs for biomimetic devices. Large, highly ordered MP 2D crystals in block copolymer (BCP) matrices are challenging to fabricate, but a facile and scalable technique for aligning and crystallizing MPs in thin-film geometries would rapidly translate into applications. This work introduces a novel method to grow larger and potentially better ordered 2D crystals by performing the crystallization process in the presence of a strong magnetic field. We demonstrate the efficacy of this approach using a ß-barrel MP, outer membrane protein F (OmpF), in short-chain polybutadiene-poly(ethylene oxide) (PB-PEO) membranes. Crystals grown in a magnetic field were up to 5 times larger than conventionally grown crystals, and a signal-to-noise (SNR) analysis of diffraction peaks in Fourier transforms of specimens imaged by negative-stain electron microscopy (EM) and cryo-EM showed twice as many high-SNR diffraction peaks, indicating that the magnetic field also improves crystal order.


Assuntos
Magnetismo , Polímeros/química , Porinas/química , Cristalização
13.
PLoS Comput Biol ; 11(12): e1004670, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26691341

RESUMO

Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.


Assuntos
Agregação Celular/fisiologia , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Adesões Focais/fisiologia , Modelos Biológicos , Animais , Simulação por Computador , Elasticidade/fisiologia , Células Epiteliais/citologia , Humanos , Mecanotransdução Celular/fisiologia , Invasividade Neoplásica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...