Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14188, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986046

RESUMO

Sleep problems in Autism Spectrum Disorder (ASD) emerge early in development, yet the origin remains unclear. Here, we characterise developmental trajectories in sleep onset latency (SOL) and night awakenings in infants at elevated likelihood (EL) for ASD (who have an older sibling with ASD) and infants at typical likelihood (TL) for ASD. Further, we test whether the ability to gate tactile input, using an EEG tactile suppression index (TSI), associates with variation in SOL and night awakenings. Parent-reported night awakenings and SOL from 124 infants (97 at EL for ASD) at 5, 10 and 14 months were analyzed using generalized estimating equations. Compared to TL infants, infants at EL had significantly more awakenings and longer SOL at 10 and 14 months. The TSI predicted SOL concurrently at 10 months, independent of ASD likelihood status, but not longitudinally at 14 months. The TSI did not predict night awakenings concurrently or longitudinally. These results imply that infants at EL for ASD wake up more frequently during the night and take longer to fall asleep from 10 months of age. At 10 months, sensory gating predicts SOL, but not night awakenings, suggesting sensory gating differentially affects neural mechanisms of sleep initiation and maintenance.


Assuntos
Transtorno do Espectro Autista , Transtornos do Sono-Vigília , Transtorno do Espectro Autista/complicações , Humanos , Lactente , Irmãos , Sono/fisiologia , Latência do Sono , Transtornos do Sono-Vigília/complicações
2.
Sleep ; 44(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245290

RESUMO

STUDY OBJECTIVES: Determine whether in the hippocampus and the supramammillary nucleus (SuM) the same neurons are reactivated when mice are exposed 1 week apart to two periods of wakefulness (W-W), paradoxical sleep rebound (PSR-PSR) or a period of W followed by a period of PSR (W-PSR). METHODS: We combined the innovative TRAP2 mice method in which neurons expressing cFos permanently express tdTomato after tamoxifen injection with cFos immunohistochemistry. RESULTS: We found out that a large number of tdTomato+ and cFos+ cells are localized in the dentate gyrus (DG) after PSR and W while CA1 and CA3 contained both types of neurons only after W. The number of cFos+ cells in the infrapyramidal but not the suprapyramidal blade of the DG was positively correlated with the amount of PS. In addition, we did not find double-labeled cells in the DG whatever the group of mice. In contrast, a high percentage of CA1 neurons were double-labeled in W-W mice. Finally, in the supramammillary nucleus, a large number of cells were double-labeled in W-W, PSR-PSR but not in W-PSR mice. CONCLUSIONS: Altogether, our results are the first to show that different neurons are activated during W and PS in the supramammillary nucleus and the hippocampus. Further, we showed for the first time that granule cells of the infrapyramidal blade of the DG are activated during PS but not during W. Further experiments are now needed to determine whether these granule cells belong to memory engrams inducing memory reactivation during PS.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Sono REM , Animais , Giro Denteado/fisiologia , Camundongos , Neurônios/fisiologia , Sono REM/fisiologia , Vigília
3.
Biochem Pharmacol ; 191: 114514, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33713640

RESUMO

Michel Jouvet proposed in 1959 that REM sleep is a paradoxical state since it was characterized by the association of a cortical activation similar to wakefulness (W) with muscle atonia. Recently, we showed using cFos as a marker of activity that cortical activation during paradoxical sleep (PS) was limited to a few limbic cortical structures in contrast to W during which all cortices were strongly activated. However, we were not able to demonstrate whether the same neurons are activated during PS and W and to rule out that the activation observed was not linked with stress induced by the flowerpot method of PS deprivation. In the present study, we answered to these two questions by combining tdTomato and cFos immunostaining in the innovative TRAP2 transgenic mice exposed one week apart to two periods of W (W-W mice), PS rebound (PSR-PSR) or a period of W followed by a period of PSR (W-PSR mice). Using such method, we showed that different neurons are activated during W and PSR in the anterior cingulate (ACA) and rostral and caudal retrosplenial (rRSP and cRSP) cortices as well as the claustrum (CLA) previously shown to contain a large number of activated neurons after PSR. Further, the distribution of the neurons during PSR in the rRSP and cRSP was limited to the superficial layers while it was widespread across all layers during W. Our results clearly show at the cellular level that PS and W are two completely different states in term of neocortical activation.


Assuntos
Claustrum/fisiologia , Distúrbios do Sono por Sonolência Excessiva/fisiopatologia , Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Sono REM/fisiologia , Vigília/fisiologia , Animais , Claustrum/citologia , Distúrbios do Sono por Sonolência Excessiva/genética , Distúrbios do Sono por Sonolência Excessiva/patologia , Feminino , Giro do Cíngulo/citologia , Masculino , Camundongos , Camundongos Transgênicos , Polissonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...