RESUMO
In this paper we report the re-analysis of the data published in (Piersanti et al. 2014) documenting the charged secondary particles production induced by the interaction of a 220 MeV/u 12C ion beam impinging on a polymethyl methacrylate (PMMA) target, measured in 2012 at the GSI facility in Darmstadt (Germany). This re-analysis takes into account the inhomogeneous light response of the LYSO crystal in the experimental setup measured in a subsequent experiment (2014) performed in the Heidelberg Ion- Beam Therapy Center. A better description of the detector and re-calculation of the geometrical efficiencies have been implemented as well, based on an improved approach that accounts also for the energy dependence of the emission spectrum. The new analysis has small effect on the total secondary charged flux, but has an impact on the production yield and emission velocity distributions of the different particle species (protons, deuterons and tritons) at different angles with respect to the beam direction (60° and 90°). All these observables indeed depend on the particle identification algorithms and hence on the LYSO detector energy response. The results of the data re-analysis presented here are intended to supersede and replace the results published in (Piersanti et al. 2014).
RESUMO
Charged particle therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbon ions. A critical issue is the monitoring of the beam range so to check the correct dose deposition to the tumor and surrounding tissues. The design of a new tracking device for beam range real-time monitoring in pencil beam carbon ion therapy is presented. The proposed device tracks secondary charged particles produced by beam interactions in the patient tissue and exploits the correlation of the charged particle emission profile with the spatial dose deposition and the Bragg peak position. The detector, currently under construction, uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a pixelated Lutetium Fine Silicate (LFS) crystal calorimeter. An algorithm to account and correct for emission profile distortion due to charged secondaries absorption inside the patient tissue is also proposed. Finally detector reconstruction efficiency for charged particle emission profile is evaluated using a Monte Carlo simulation considering a quasi-realistic case of a non-homogenous phantom.
Assuntos
Radioterapia com Íons Pesados/instrumentação , Desenho de Equipamento , Imagens de Fantasmas , Prótons , Dosagem Radioterapêutica , Contagem de CintilaçãoRESUMO
The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.
RESUMO
UNLABELLED: A novel radioguided surgery (RGS) technique exploiting ß- radiation has been proposed. To develop such a technique, a suitable radiotracer able to deliver a ß- emitter to the tumor has to be identified. A first candidate is represented by 90Y-labeled DOTATOC, a compound commonly used today for peptide radioreceptor therapy. The application of this ß- RGS to neuroendocrine tumors (NET) requires study of the uptake of DOTATOC and its time evolution both in tumors and in healthy organs and evaluation of the corresponding performance of the technique. METHODS: Uptake by lesions and healthy organs (kidneys, spleen, liver and healthy muscle) was estimated on 177Lu-DOTATOC SPECT/CT scans of 15 patients affected by NET with different localizations, treated at IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy. For each patient, SPECT/CT images, acquired at 0.5, 4, 20, 40, and 70 h after injection, were studied. For each lesion, the tumor-to-nontumor ratio (TNR) with respect to all healthy organs and its time evolution were studied. A subset of patients showing hepatic lesions was selected, and the TNR with respect to the nearby healthy tissue was calculated. By means of a Monte Carlo simulation of the probe for ß- RGS, the activity that is to be administered for a successful detection was estimated lesion-by-lesion. RESULTS: Uptake of DOTATOC on NETs maximized at about 24 h after injection. The cases of hepatic lesions showed a TNR with respect to the tumor margins compatible with the application of ß- RGS. In particular, 0.1-mL residuals are expected to be detectable within 1 s with 5% false-negative and 1% false-positive by administering the patient as little as 1 MBq/kg. CONCLUSION: The balance between tumor uptake and metabolic washout in healthy tissue causes the TNR to increase with time, reaching its maximum after 24 h, and this characteristic can be exploited when a radiotracer with a long half-life, such as 90Y, is used. In particular, if 90Y-DOTATOC is used with liver NET metastases, the proposed RGS technique is believed to be feasible by injecting an activity that is one third of that commonly used for PET imaging.
Assuntos
Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/cirurgia , Octreotida/análogos & derivados , Compostos Radiofarmacêuticos/farmacocinética , Cirurgia Assistida por Computador/métodos , Partículas beta , Meia-Vida , Humanos , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Octreotida/farmacocinética , Baço/diagnóstico por imagem , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton ÚnicoRESUMO
UNLABELLED: A novel radioguided surgery (RGS) technique for cerebral tumors using ß(-) radiation is being developed. Checking for a radiotracer that can deliver a ß(-) emitter to the tumor is a fundamental step in the deployment of such a technique. This paper reports a study of the uptake of (90)Y-DOTATOC in meningiomas and high-grade gliomas (HGGs) and a feasibility study of the RGS technique in these types of tumor. Estimates were performed assuming the use of a ß(-) probe under development with a sensitive area 2.55 mm in radius to detect 0.1-mL residuals. METHODS: Uptake and background from healthy tissues were estimated on (68)Ga-DOTATOC PET scans of 11 meningioma patients and 12 HGG patients. A dedicated statistical analysis of the DICOM images was developed and validated. The feasibility study was performed using full simulation of emission and detection of the radiation, accounting for the measured uptake and background rate. RESULTS: All meningioma patients but one with an atypical extracranial tumor showed high uptake of DOTATOC. In terms of feasibility of the RGS technique, we estimated that by administering a 3 MBq/kg activity of radiotracer, the time needed to detect a 0.1-mL remnant with 5% false-negative and 1% false-positive rates is less than 1 s. Actually, to achieve a detection time of 1 s the required activities to administer were as low as 0.2-0.5 MBq/kg in many patients. In HGGs, the uptake was lower than in meningiomas, but the tumor-to-nontumor ratio was higher than 4, which implies that the tracer can still be effective for RGS. It was estimated that by administering 3 mBq/kg of radiotracer, the time needed to detect a 0.1-mL remnant is less than 6 s, with the exception of the only oligodendroma in the sample. CONCLUSION: Uptake of (90)Y-DOTATOC in meningiomas was high in all studied patients. Uptake in HGGs was significantly worse than in meningiomas but was still acceptable for RGS, particularly if further research and development are done to improve the performance of the ß(-) probe.