Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 16(8): 1278-1285, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937593

RESUMO

The interactions between gold nanoparticles, their surface ligands and the solvent critically influence the properties of these nanoparticles. Although spectroscopic and scattering techniques have been used to investigate their ensemble structure, a comprehensive understanding of these processes at the nanoscale remains challenging. Electron microscopy makes it possible to characterize the local structure and composition but is limited by insufficient contrast, electron beam sensitivity and the requirement for ultrahigh-vacuum conditions, which prevent the investigation of dynamic aspects. Here we show that, by exploiting high-quality graphene liquid cells, we can overcome these limitations and investigate the structure of the ligand shell around gold nanoparticles and at the ligand-gold interface in a liquid environment. Using this graphene liquid cell, we visualize the anisotropy, composition and dynamics of ligand distribution on gold nanorod surfaces. Our results indicate a micellar model for surfactant organization. This work provides a reliable and direct visualization of ligand distribution around colloidal nanoparticles.

2.
Micron ; 144: 103036, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640671

RESUMO

In situ TEM is a valuable technique to offer novel insights in the behavior of nanomaterials under various conditions. However, interpretation of in situ experiments is not straightforward since the electron beam can impact the outcome of such measurements. For example, ligands surrounding metal nanoparticles transform into a protective carbon layer upon electron beam irradiation and may impact the apparent thermal stability during in situ heating experiments. In this work, we explore the effect of different treatments typically proposed to remove such ligands. We found that plasma treatment prior to heating experiments for Au nanorods and nanostars increased the apparent thermal stability of the nanoparticles, while an activated carbon treatment resulted in a decrease of the observed thermal stability. Treatment with HCl barely changed the experimental outcome. These results demonstrate the importance of carefully selecting pre-treatments procedures during in situ heating experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...