Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Parkinsonism Relat Disord ; 123: 106063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38443213

RESUMO

BACKGROUND: Neurodegenerative diseases share retinal abnormalities. Chromatic pupillometry allows in vivo assessment of photoreceptor functional integrity, including melanopsin-expressing retinal ganglion cells. This exploratory meta-analysis assesses retinal photoreceptor functionality in Alzheimer's vs. Parkinson's disease and conducts an in-depth review of applied pupillometric protocols. METHODS: Literature reviews on PubMed and Scopus from 1991 to August 2023 identified chromatic pupillometry studies on Alzheimer's disease (AD; n = 42 patients from 2 studies) and Parkinson's disease (PD; n = 66 from 3 studies). Additionally, a pre-AD study (n = 10) and an isolated REM Sleep Behavior Disorder study (iRBD; n = 10) were found, but their results were not included in the meta-analysis statistics. RESULTS: Melanopsin-mediated post-illumination pupil response to blue light was not significantly impaired in Alzheimer's (weighted mean difference = -1.54, 95% CI: 4.57 to 1.49, z = -1.00, p = 0.319) but was in Parkinson's (weighted mean difference = -9.14, 95% CI: 14.19 to -4.08, z = -3.54, p < 0.001). Other pupil light reflex metrics showed no significant differences compared to controls. Studies adhered to international standards of pupillometry with moderate to low bias. All studies used full-field stimulation. Alzheimer's studies used direct while Parkinson's studies used consensual measurement. Notably, studies did not control for circadian timing and Parkinson's patients were on dopaminergic treatment. CONCLUSION AND RELEVANCE: Results affirm chromatic pupillometry as a useful method to assess melanopsin-related retinal cell dysfunction in Parkinson's but not in Alzheimer's disease. While adhering to international standards, future studies may analyze the effects of local field stimulation, dopaminergic treatment, and longitudinal design to elucidate melanopsin dysfunction in Parkinson's disease.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Células Ganglionares da Retina , Opsinas de Bastonetes , Humanos , Opsinas de Bastonetes/metabolismo , Doença de Parkinson/fisiopatologia , Doença de Alzheimer/fisiopatologia , Reflexo Pupilar/fisiologia , Pupila/fisiologia
2.
Front Neurosci ; 17: 1105233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875666

RESUMO

While short-term effects of artificial light on human sleep are increasingly being studied, reports on long-term effects induced by season are scarce. Assessments of subjective sleep length over the year suggest a substantially longer sleep period during winter. Our retrospective study aimed to investigate seasonal variation in objective sleep measures in a cohort of patients living in an urban environment. In 2019, three-night polysomnography was performed on 292 patients with neuropsychiatric sleep disturbances. Measures of the diagnostic second nights were averaged per month and analyzed over the year. Patients were advised to sleep "as usual" including timing, except alarm clocks were not allowed. Exclusion criteria: administration of psychotropic agents known to influence sleep (N = 96), REM-sleep latency > 120 min (N = 5), technical failure (N = 3). Included were 188 patients: [46.6 ± 15.9 years (mean ± SD); range 17-81 years; 52% female]; most common sleep-related diagnoses: insomnia (N = 108), depression (N = 59) and sleep-related breathing disorders (N = 52). Analyses showed: 1. total sleep time (TST) longer during winter than summer (up to 60 min; not significant); 2. REM-sleep latency shorter during autumn than spring (about 25 min, p = 0.010); 3. REM-sleep longer during winter than spring (about 30 min, p = 0.009, 5% of TST, p = 0.011); 4. slow-wave-sleep stable winter to summer (about 60-70 min) with 30-50 min shorter during autumn (only significant as % of TST, 10% decrease, p = 0.017). Data suggest seasonal variation in sleep architecture even when living in an urban environment in patients with disturbed sleep. If replicated in a healthy population, this would provide first evidence for a need to adjust sleep habits to season.

3.
J Neurol Neurosurg Psychiatry ; 94(7): 532-540, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36725328

RESUMO

BACKGROUND: Isolated rapid eye movement (REM) sleep behaviour disorder (iRBD) is a prodromal state of clinical α-synucleinopathies such as Parkinson's disease and Lewy body dementia. The lead-time until conversion is unknown. The most reliable marker of progression is reduced striatal dopamine transporter (DAT) binding, but low availability of imaging facilities limits general use. Our prospective observational study aimed to relate metrics of REM sleep without atonia (RWA)-a hallmark of RBD-to DAT-binding ratios in a large, homogeneous sample of patients with RBD to explore the utility of RWA as a marker of progression in prodromal α-synucleinopathies. METHODS: DAT single-photon emission CT (SPECT) and video polysomnography (vPSG) were performed in 221 consecutive patients with clinically suspected RBD. RESULTS: vPSG confirmed RBD in 176 patients (162 iRBD, 14 phenoconverted, 45 non-synucleinopathies). Specific DAT-binding ratios differed significantly between groups, but showed considerable overlap. Most RWA metrics correlated significantly with DAT-SPECT ratios (eg, Montreal tonic vs most-affected-region: r=-0.525; p<0.001). In patients taking serotonergic/noradrenergic antidepressants or dopaminergic substances or with recent alcohol abuse, correlations were weaker, suggesting a confounding influence, unlike other possible confounders such as beta-blocker use or comorbid sleep apnoea. CONCLUSIONS: In this large single-centre prospective observational study, we found evidence that DAT-binding ratios in patients with iRBD can be used to describe a continuum in the neurodegenerative process. Overlap with non-synucleinopathies and clinical α-synucleinopathies, however, precludes the use of DAT-binding ratios as a precise diagnostic marker. The parallel course of RWA metrics and DAT-binding ratios suggests in addition to existing data that RWA, part of the routine diagnostic workup in these patients, may represent a marker of progression. Based on our findings, we suggest ranges of RWA values to estimate whether patients are in an early, medium or advanced state within the prodromal phase of α-synucleinopathies, providing them with important information about time until possible conversion.


Assuntos
Doença por Corpos de Lewy , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , Sinucleinopatias/diagnóstico , Sono REM , Prognóstico , Doença por Corpos de Lewy/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/metabolismo , Proteínas de Membrana Transportadoras , Biomarcadores
4.
J Parkinsons Dis ; 12(2): 593-598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34806618

RESUMO

Neurodegenerative processes in the brain are reflected by structural retinal changes. As a possible biomarker of cognitive state in prodromal α-synucleinopathies, we compared melanopsin-mediated post-illumination pupil response (PIPR) with cognition (CERAD-plus) in 69 patients with isolated REM-sleep behavior disorder. PIPR was significantly correlated with cognitive domains, especially executive functioning (r = 0.417, p < 0.001), which was more pronounced in patients with lower dopamine-transporter density, suggesting advanced neurodegenerative state (n = 26; r = 0.575, p = 0.002). Patients with mild neurocognitive disorder (n = 10) had significantly reduced PIPR (smaller melanopsin-mediated response) compared to those without (p = 0.001). Thus, PIPR may be a functional-possibly monitoring-marker for impaired cognitive state in (prodromal) α-synucleinopathies.


Assuntos
Doença de Parkinson , Sinucleinopatias , Biomarcadores , Cognição , Humanos , Iluminação , Pupila/fisiologia , Reflexo Pupilar/fisiologia , Células Ganglionares da Retina/fisiologia
5.
NAR Genom Bioinform ; 4(4): lqac097, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601580

RESUMO

The skin is the largest human organ with a circadian clock that regulates its function. Although circadian rhythms in specific functions are known, rhythms in the proximal clock output, gene expression, in human skin have not been thoroughly explored. This work reports 24 h gene expression rhythms in two skin layers, epidermis and dermis, in a cohort of young, healthy adults, who maintained natural, regular sleep-wake schedules. 10% of the expressed genes showed such diurnal rhythms at the population level, of which only a third differed between the two layers. Amplitude and phases of diurnal gene expression varied more across subjects than layers, with amplitude being more variable than phases. Expression amplitudes in the epidermis were larger and more subject-variable, while they were smaller and more consistent in the dermis. Core clock gene expression was similar across layers at the population-level, but were heterogeneous in their variability across subjects. We also identified small sets of biomarkers for internal clock phase in each layer, which consisted of layer-specific non-core clock genes. This work provides a valuable resource to advance our understanding of human skin and presents a novel methodology to quantify sources of variability in human circadian rhythms.

6.
J Biol Rhythms ; 34(4): 410-431, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31156018

RESUMO

Nighttime melatonin suppression is the most commonly used method to indirectly quantify acute nonvisual light effects. Since light is the principal zeitgeber in humans, there is a need to assess its strength during daytime as well. This is especially important since humans evolved under natural daylight but now often spend their time indoors under artificial light, resulting in a different quality and quantity of light. We tested whether the pupillary light response (PLR) could be used as a marker for nonvisual light effects during daytime. We also recorded the wake electroencephalogram to objectively determine changes in daytime sleepiness between different illuminance levels and/or spectral compositions of light. In total, 72 participants visited the laboratory 4 times for 3-h light exposures. All participants underwent a dim-light condition and either 3 metameric daytime light exposures with different spectral compositions of polychromatic white light (100 photopic lux, peak wavelengths at 435 nm or 480 nm, enriched with longer wavelengths of light) or 3 different illuminances (200, 600, and 1200 photopic lux) with 1 metameric lighting condition (peak wavelength at 435 nm or 480 nm; 24 participants each). The results show that the PLR was sensitive to both spectral differences between metameric lighting conditions and different illuminances in a dose-responsive manner, depending on melanopic irradiance. Objective sleepiness was significantly reduced, depending on melanopic irradiance, at low illuminance (100 lux) and showed fewer differences at higher illuminance. Since many people are exposed to such low illuminance for most of their day-living in biological darkness-our results imply that optimizing the light spectrum could be important to improve daytime alertness. Our results suggest the PLR as a noninvasive physiological marker for ambient light exposure effects during daytime. These findings may be applied to assess light-dependent zeitgeber strength and evaluate lighting improvements at workplaces, schools, hospitals, and homes.


Assuntos
Escuridão , Luz , Pupila/fisiologia , Sonolência , Adulto , Ritmo Circadiano , Eletroencefalografia , Feminino , Humanos , Masculino , Melatonina/biossíntese , Adulto Jovem
7.
J Clin Invest ; 128(9): 3826-3839, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29953415

RESUMO

BACKGROUND: The circadian clock is a fundamental and pervasive biological program that coordinates 24-hour rhythms in physiology, metabolism, and behavior, and it is essential to health. Whereas therapy adapted to time of day is increasingly reported to be highly successful, it needs to be personalized, since internal circadian time is different for each individual. In addition, internal time is not a stable trait, but is influenced by many factors, including genetic predisposition, age, sex, environmental light levels, and season. An easy and convenient diagnostic tool is currently missing. METHODS: To establish a validated test, we followed a 3-stage biomarker development strategy: (a) using circadian transcriptomics of blood monocytes from 12 individuals in a constant routine protocol combined with machine learning approaches, we identified biomarkers for internal time; and these biomarkers (b) were migrated to a clinically relevant gene expression profiling platform (NanoString) and (c) were externally validated using an independent study with 28 early or late chronotypes. RESULTS: We developed a highly accurate and simple assay (BodyTime) to estimate the internal circadian time in humans from a single blood sample. Our assay needs only a small set of blood-based transcript biomarkers and is as accurate as the current gold standard method, dim-light melatonin onset, at smaller monetary, time, and sample-number cost. CONCLUSION: The BodyTime assay provides a new diagnostic tool for personalization of health care according to the patient's circadian clock. FUNDING: This study was supported by the Bundesministerium für Bildung und Forschung, Germany (FKZ: 13N13160 and 13N13162) and Intellux GmbH, Germany.


Assuntos
Biomarcadores/sangue , Ritmo Circadiano/fisiologia , Adulto , Cronoterapia , Ritmo Circadiano/genética , Estudos de Coortes , Perfilação da Expressão Gênica , Marcadores Genéticos , Voluntários Saudáveis , Humanos , Aprendizado de Máquina , Masculino , Modelos Biológicos , Monócitos/metabolismo , Medicina de Precisão , Fatores de Tempo , Adulto Jovem
8.
Curr Alzheimer Res ; 14(10): 1042-1052, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28545361

RESUMO

OBJECTIVE: At the beginning of this century, a novel photopigment, melanopsin, was discovered in a sub-class of retinal ganglion cells and its action spectrum was described. Shortly after, it became evident that melanopsin is a major contributor to non-visual eye-mediated effects of light on e.g. the circadian, neuroendocrine and neurobehavioral systems. First applied studies pointed out that these non-visual effects of light are relevant for wellbeing, performance and general health. A standardized measurement metric for these nonvisual effects does not exist, but would ease application. Such a metric termed as 'melanopic lux' has been recently introduced and was shown to be superior to describe non-visual effects in animal studies compared to standard metrics. METHODS: We aimed at showing some validity of melanopic lux in humans using a seminaturalistic setting. Therefore, we analyzed the impact of different lighting conditions on melatonin suppression and subjective sleepiness by calculating effective illuminance based on single photopigment sensitivities. We retrospectively analyzed data from our laboratory, where young participants were exposed to a total of 19 different polychromatic lighting conditions, for 30 minutes in the evening, one hour prior to habitual bedtime. Saliva samples for melatonin concentration measures and subjective sleepiness were regularly assessed. The photopic illuminance of all lighting conditions ranged from 3 to 604 lx. Stepwise for- and backward regression analyses showed that melanopic lux was the best predictor for changes in melatonin concentrations (but not subjective sleepiness); R²=0.16 (p<0.05). In addition, we found a significant dose-response relationship between melanopic lux and changes in melatonin concentrations for 18 different lighting conditions (adjusted R²=0.52; p=0.004), similarly to what was previously reported for photopic lux. RESULTS: Our results indicate some new relevance for the application of melanopic lux as an additional metric to predict non-visual light effects of electrical light sources for nursing homes, work places, and homes.


Assuntos
Luz , Melatonina/análise , Vigília/fisiologia , Adolescente , Adulto , Feminino , Humanos , Iluminação , Masculino , Análise de Regressão , Estudos Retrospectivos , Saliva/química , Sono/fisiologia , Sono/efeitos da radiação , Adulto Jovem
9.
Neuropsychobiology ; 74(4): 207-218, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28637029

RESUMO

Light during the day and darkness at night are crucial factors for proper entrainment of the human circadian system to the solar 24-h day. However, modern life and work styles have led to much more time spent indoors, often with lower daytime and higher evening/nighttime light intensity from electrical lighting than outdoors. Whether this has long-term consequences for human health is being currently investigated. We tested if bright blue-enriched morning light over several days could counteract the detrimental effects of inadequate daytime and evening lighting. In a seminaturalistic, within-between subject study design, 18 young participants were exposed to different lighting conditions on 3 evenings (blue-enriched, bright orange, or dim light), after exposure to 2 lighting conditions (mixed blue-enriched light and control light, for 3 days each) in the mornings. Subjective sleepiness, reaction times, salivary melatonin concentrations, and nighttime sleep were assessed. Exposure to the blue-enriched morning lighting showed acute wake-promoting effects and faster reaction times than with control lighting. Some of these effects persisted until the evening, and performance improved over several days. The magnitude of circadian phase shifts induced by combinations of 3 different evening and 2 morning lighting conditions were significantly smaller with the blue-enriched morning light. During the night, participants had longer total sleep times after orange light exposure than after blue light exposure in the evening. Our results indicate that bright blue-enriched morning light stabilizes circadian phase, and it could be an effective counterstrategy for poor lighting during the day and also light exposure at the wrong time, such as in the late evening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...