Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(14): 5407-5415, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38478766

RESUMO

COVID-19 vaccines have been provided to the general public to build immunity since the 2019 coronavirus pandemic. Once vaccinated, SARS-CoV-2 neutralizing antibodies (NAbs-COVID-19) are needed for excellent protection against COVID-19. However, monitoring NAbs-COVID-19 is complicated and requires hospital visits. Moreover, the resulting NAbs-COVID-19 are effective against different strains of COVID-19 depending on the type of vaccine received. Here, an overlaid lateral flow immunoassay (O-LFIA) was developed for the simultaneous detection of two NAbs-COVID-19 against different virus strains, Delta and Omicron. The O-LFIA was visualized with two T-lines with a single device using competition between the free antigen and the antigen-binding antibody. Angiotensin-converting enzyme 2 (ACE2) immobilized on the T-line binds to the antigen remaining after antibody binding. Under the optimum conditions, the proposed device exhibited 50% inhibition concentrations (IC50 values) of 45.1 and 53.6 ng/mL for the Delta and Omicron variants, respectively. Additionally, the proposed platform was applied to real-world samples of animal and human serum, and the developed immunoassay provided results that were in good agreement with those obtained with the standard method. In conclusion, this developed O-LFIA can be used as an alternative method to detect NAbs-COVID-19 and can be enabled for future advancements toward commercialization.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Anticorpos Neutralizantes , COVID-19/diagnóstico , Vacinas contra COVID-19 , Anticorpos Antivirais , Imunoensaio
2.
Anal Chim Acta ; 1279: 341768, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827668

RESUMO

Cannabis is a plant that is harmful and beneficial because it contains more than 400 bioactive compounds, and the main compounds are Δ9 tetrahydrocannabinol (THC) and cannabidiol (CBD). Currently, cannabis extracts are used in medicine, but the amount of THC as a main psychoactive component is strictly regulated. Therefore, the ability to rapidly and accurately detect THC is important. Herein, we developed a sensitive electrochemical method combining a rapid lateral flow assay (LFA) to detect THC rapidly. An electrochemical LFA device was constructed by attaching a screen-printed electrode inside a lateral-flow device to exploit the remarkable binding of THC to the cannabinoid type 2 (CB2) receptor in the test zone. The ferrocene carboxylic acid attached to the monoclonal THC antibody acts as an electroactive species when it binds to the THC in the sample before it flows continuously to the CB2 receptor region on the electrode. Under optimal conditions, the detection time is within 6 min and the devise shows excellent performance with a detection limit of 1.30 ng/mL. Additionally, the device could be applied to detect THC in hemp extract samples. The results obtained from this sensor are similar to the standard method (HPLC) for detecting THC. Therefore, this proposed device is useful as an alternative device for the on-site determination of THC because it is inexpensive, portable, and exhibits high sensitivity.


Assuntos
Canabidiol , Cannabis , Dronabinol/análise , Cannabis/química , Canabidiol/análise , Canabidiol/metabolismo , Cromatografia Líquida de Alta Pressão , Extratos Vegetais
3.
Bioelectrochemistry ; 152: 108438, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37054603

RESUMO

Antigen test kits (ATK) are extensively utilized for screening and diagnosing COVID-19 because they are easy to operate. However, ATKs exhibit poor sensitivity and cannot detect low concentrations of SARS-CoV-2. Herein, we present a new, highly sensitive, and selective device obtained by combining the principle of ATKs with electrochemical detection for COVID-19 diagnosis, which can be quantitatively assessed using a smartphone. An electrochemical test strip (E-test strip) was constructed by attaching a screen-printed electrode inside a lateral-flow device to exploit the remarkable binding affinity of SARS-CoV-2 antigen to ACE2. The ferrocene carboxylic acid attached to SARS-CoV-2 antibody acts as an electroactive species when it binds to SARS-CoV-2 antigen in the sample before it flows continuously to the ACE2-immobilization region on the electrode. Electrochemical-assay signal intensity on smartphones increased proportionally to the concentration of SARS-CoV-2 antigen (LOD = 2.98 pg/mL, under 12 min). Additionally, the application of the single-step E-test strip for COVID-19 screening was demonstrated using nasopharyngeal samples, and the results were consistent with those obtained using the gold standard (RT-PCR). Therefore, the sensor demonstrated excellent performance in assessing and screening COVID-19, and it can be used professionally to accurately verify diagnostic data while remaining rapid, simple, and inexpensive.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Sensibilidade e Especificidade , Imunoensaio/métodos
4.
Anal Chem ; 94(5): 2554-2560, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35089007

RESUMO

LipL32 is an outer membrane protein present only on pathogenic Leptospira species, which is the causative agent of leptospirosis. Leptospirosis symptoms are often misdiagnosed with other febrile illnesses as the clinical manifestations are non-specific. Therefore, an accurate diagnostic tool for leptospirosis is indeed critical for proper and prompt treatment. Typical diagnosis via serological assays is generally performed to assess the antibodies produced against Leptospira. However, their delayed antibody response and complicated procedure undoubtedly limit the practical utilization especially in a primary care setting. Here, we demonstrate for the first time an early-stage detection of LipL32 by an integrated lateral-flow immunoassay with an electrochemical readout (eLFIA). A ferrocene trace tag was monitored via differential pulse voltammetry operated on a smartphone-based device, thus allowing for on-field testing. A superior performance in terms of the lowest detectable limit of detection of 8.53 pg/mL and broad linear dynamic range (5 orders of magnitude) among other sensors available thus far was established. Additionally, the developed test strip provided a straightforward yet sensitive approach for diagnosis of leptospirosis using the collected human sera from patients, in which the results were comparable to the real-time polymerase chain reaction technique.


Assuntos
Leptospira , Leptospirose , Proteínas da Membrana Bacteriana Externa/genética , Humanos , Imunoensaio/métodos , Leptospira/genética , Leptospirose/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
5.
World J Hepatol ; 13(3): 315-327, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33815675

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a global health issue that is correlated with obesity and oxidative stress. AIM: To evaluate the anti-NAFLD effect of papaya in high fat diet induced obesity in rats. METHODS: Four-week-old male Sprague-Dawley rats were divided into four groups after 1 wk of acclimatization: Group 1 was the rats fed a normal diet (C); group 2 was the rats fed a high fat diet (HFD); group 3 was the rats fed a HFD with 0.5 mL of papaya juice/100 g body weight (HFL), and group 4 was the rats fed a HFD with 1 mL of papaya juice/100 g body weight (HFH) for 12 wk. At the end of the treatment, blood and tissue samples were collected for biochemical analyses and histological assessment. RESULTS: The results of the HFH group showed significantly reduced body weight (HFH vs HFD, P < 0.01), decreased NAFLD score (HFH vs HFD, P < 0.05), and reduced hepatic total cholesterol (HFL vs HFD, P < 0.01; HFH vs HFD, P < 0.001), hepatic triglyceride (HFH vs HFD, P < 0.05), malondialdehyde (HFL, HFH vs HFD, P < 0.001), tumour necrosis factor-α (HFH vs HFD, P < 0.05) and interleukin-6 (HFH vs HFD, P < 0.05) when compared to the HFD group. However, the liver weight showed no significant difference among the groups. The activities of catalase and superoxide dismutase significantly increased in HFH when compared with the HFD group (P < 0.05 and P < 0.001, respectively). The suppression of transcriptional factors of hepatic lipogenesis, including sterol regulatory element-binding protein 1c and fatty acid synthase, were observed in the papaya treated group (HFH vs HFD, P < 0.05). These beneficial effects of papaya against HFD-induced NAFLD are through lowering hepatic lipid accumulation, suppressing the lipogenic pathway, improving the balance of antioxidant status, and lowering systemic inflammation. CONCLUSION: These current results provide experimental-based evidence suggesting papaya is an efficacious medicinal fruit for use in the prevention or treatment of NAFLD.

6.
Biomed Rep ; 13(4): 30, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32802327

RESUMO

The present study evaluated the anti-obesity properties of papaya in high-fat (HF) diet fed rats. In the in vitro portion of the present study, the effects of papaya juice on pancreatic lipase enzyme activity was assessed, and it was shown that papaya exhibited an inhibitory effect on these enzymes. In the in vivo portion of the study, papaya was found to reduce the expression levels of markers of obesity, inflammation and oxidative stress in rats. Obesity was induced in 28 male Sprague Dawley rats by feeding them a HF diet for 12 weeks. The anti-obesity effects of papaya was evaluated by feeding papaya juice orally in with two experimental doses: 0.5 ml (HFL) and 1.0 ml (HFH) per 100 g of body weight. The HF diet resulted in significant increases in the body weight, serum triglyceride, serum total cholesterol and serum low-density lipoprotein cholesterol levels, as well as a decrease in serum high-density lipoprotein cholesterol levels. The HF diet also induced adipocyte hypertrophy, lipid accumulation and increased malondialdehyde levels. Papaya reversed all of these changes and significantly increased serum superoxide dismutase and decreased serum cytokine (interleukin-6) levels. The protein expression of levels PPARγ in the HF group was significantly increased compared with the other groups, but was decreased significantly in the HFH group. Histological observations of epididymal adipose tissue provided evidence for the lipid-lowering effects of papaya. The results of the present study demonstrate that papaya has the potential to reduce the risk of obesity associated with adiposity, anti-inflammation and anti-oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...