Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(11): e0207582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30440033

RESUMO

It is unknown whether patients with LTBI at high vs. low risk of developing active TB are currently adequately identified and treated in the US. In this study our objective was 1) To retrospectively apply the online calculator (tstin3d.com) to determine the probability of having LTBI and assign cumulative risk of progression. 2) Measure treatment outcomes in subjects with Low: 0-<10%, Intermediate: 10-<50% and High: 50-100% cumulative risk. We performed medical record review of tuberculin skin test and/or Interferon-γ release assay (IGRAs) positive patients with LTBI seen from 2010-2015. Of 125 subjects included, 51(41%), 46 (37%) and 28 (22%) subjects were in Low, Intermediate and High risk groups respectively. Tstin3d.com was useful in determining the probability of LTBI in tuberculin skin test positive US-born subjects. Overall treatment completion rate was 61% in 114 subjects with complete treatment information and similar completion rates were seen in the three groups (Low-60%, Intermediate-63% and High-57%). Provider assessment of important clinical risk factors was often incomplete. Logistic regression analysis showed no association of assessment of important risk factors with treatment completion. The major limitations of the calculator are the lack of an updated data on country-specific prevalence of TB disease as the global burden of TB continues to decrease as well as falsely high positive predictive values that due to "transiently" positive IGRA results in subjects from countries with low prevalence. Nonetheless, our findings suggest that tstin3d.com could be utilized in the US setting for improving providing awareness of risk stratification of patients with LTBI for short course treatment regimens based on risk.


Assuntos
Tuberculose Latente/diagnóstico , Tuberculose Latente/terapia , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Humanos , Testes de Liberação de Interferon-gama/métodos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Fatores de Risco , Teste Tuberculínico/métodos , Adulto Jovem
2.
J Infect Dis ; 216(4): 489-501, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28931235

RESUMO

Background: Extremely drug-resistant (XDR) Acinetobacter baumannii is one of the most commonly encountered, highly resistant pathogens requiring novel therapeutic interventions. Methods: We developed C8, a monoclonal antibody (mAb), by immunizing mice with sublethal inocula of a hypervirulent XDR clinical isolate. Results: C8 targets capsular carbohydrate on the bacterial surface, enhancing opsonophagocytosis. Treating with a single dose of C8 as low as 0.5 µg/mouse (0.0167 mg/kg) markedly improved survival in lethal bacteremic sepsis and aspiration pneumonia models of XDR A. baumannii infection. C8 was also synergistic with colistin, substantially improving survival compared to monotherapy. Treatment with C8 significantly reduced blood bacterial density, cytokine production (tumor necrosis factor α, interleukin [IL] 6, IL-1ß, and IL-10), and sepsis biomarkers. Serial in vitro passaging of A. baumannii in the presence of C8 did not cause loss of mAb binding to the bacteria, but did result in emergence of less-virulent mutants that were more susceptible to macrophage uptake. Finally, we developed a highly humanized variant of C8 that retains opsonophagocytic activity in murine and human macrophages and rescued mice from lethal infection. Conclusions: We describe a promising and novel mAb as therapy for lethal, XDR A. baumannii infections, and demonstrate that it synergistically improves outcomes in combination with antibiotics.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Sepse/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Biomarcadores/sangue , Colistina/farmacologia , Citocinas/sangue , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Células HL-60 , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Sepse/microbiologia , Resultado do Tratamento
3.
mBio ; 8(4)2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830942

RESUMO

For more than a century, diabetic patients have been considered immunosuppressed due to defects in phagocytosis and microbial killing. We confirmed that diabetic mice were hypersusceptible to bacteremia caused by Gram-negative bacteria (GNB), dying at inocula nonlethal to nondiabetic mice. Contrary to the pervasive paradigm that diabetes impedes phagocytic function, the bacterial burden was no greater in diabetic mice despite excess mortality. However, diabetic mice did exhibit dramatically increased levels of proinflammatory cytokines in response to GNB infections, and immunosuppressing these cytokines with dexamethasone restored their resistance to infection, both of which are consistent with excess inflammation. Furthermore, disruption of the receptor for advanced glycation end products (RAGE), which is stimulated by heightened levels of AGEs in diabetic hosts, protected diabetic but not nondiabetic mice from GNB infection. Thus, rather than immunosuppression, diabetes drives lethal hyperinflammation in response to GNB by signaling through RAGE. As such, interventions to improve the outcomes from GNB infections should seek to suppress the immune response in diabetic hosts.IMPORTANCE Physicians and scientists have subscribed to the dogma that diabetes predisposes the host to worse outcomes from infections because it suppresses the immune system. This understanding was based largely on ex vivo studies of blood from patients and animals with diabetes. However, we have found that the opposite is true and worse outcomes from infection are caused by overstimulation of the immune system in response to bacteria. This overreaction occurs by simultaneous ligation of two host receptors: TLR4 and RAGE. Both signal via a common downstream messenger, MyD88, triggering hyperinflammation. In summary, contrary to hundred-year-old postulations about immune suppression in diabetic hosts, we find that diabetes instead predisposes to more severe infections because of additional inflammatory output through dual activation of MyD88 by not only TLR4 but also RAGE. It is the activation of RAGE during GNB infections in those with diabetes that accounts for their heightened susceptibility to infection compared to nondiabetic hosts.


Assuntos
Diabetes Mellitus Experimental/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Inflamação/imunologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Carga Bacteriana , Citocinas/imunologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Progressão da Doença , Infecções por Bactérias Gram-Negativas/complicações , Infecções por Bactérias Gram-Negativas/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fagocitose , Receptor para Produtos Finais de Glicação Avançada/deficiência , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais , Receptor 4 Toll-Like/genética
4.
Results Immunol ; 6: 5-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870635

RESUMO

Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...