Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
2.
ACS Nano ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051760

RESUMO

Nanopore technology is widely used for sequencing DNA, RNA, and peptides with single-molecule resolution, for fingerprinting single proteins, and for detecting metabolites. However, the molecular driving forces controlling the analyte capture, its residence time, and its escape have remained incompletely understood. The recently developed Nanopore Electro-Osmotic trap (NEOtrap) is well fit to study these basic physical processes in nanopore sensing, as it reveals previously missed events. Here, we use the NEOtrap to quantitate the electro-osmotic and electrophoretic forces that act on proteins inside the nanopore. We establish a physical model to describe the capture and escape processes, including the trapping energy potential. We verified the model with experimental data on CRISPR dCas9-RNA-DNA complexes, where we systematically screened crucial modeling parameters such as the size and net charge of the complex. Tuning the balance between electrophoretic and electro-osmotic forces in this way, we compare the trends in the kinetic parameters with our theoretical models. The result is a comprehensive picture of the major physical processes in nanopore trapping, which helps to guide the experiment design and signal interpretation in nanopore experiments.

3.
Adv Mater ; : e2405104, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014922

RESUMO

Biological nanopores crucially control the import and export of biomolecules across lipid membranes in cells. They have found widespread use in biophysics and biotechnology, where their typically narrow, fixed diameters enable selective transport of ions and small molecules, as well as DNA and peptides for sequencing applications. Yet, due to their small channel sizes, they preclude the passage of large macromolecules, e.g., therapeutics. Here, the unique combined properties of DNA origami nanotechnology, machine-inspired design, and synthetic biology are harnessed, to present a structurally reconfigurable DNA origami MechanoPore (MP) that features a lumen that is tuneable in size through molecular triggers. Controllable switching of MPs between 3 stable states is confirmed by 3D-DNA-PAINT super-resolution imaging and through dye-influx assays, after reconstitution of the large MPs in the membrane of liposomes via an inverted-emulsion cDICE technique. Confocal imaging of transmembrane transport shows size-selective behavior with adjustable thresholds. Importantly, the conformational changes are fully reversible, attesting to the robust mechanical switching that overcomes pressure from the surrounding lipid molecules. These MPs advance nanopore technology, offering functional nanostructures that can be tuned on-demand - thereby impacting fields as diverse as drug delivery, biomolecule sorting, and sensing, as well as bottom-up synthetic biology.

4.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38765996

RESUMO

Peptide phytohormones are decorated with post-translational modifications (PTMs) that are crucial for receptor recognition. Tyrosine sulfation on these hormones is essential for plant growth and development1. Measuring the occurrence and position of sulfotyrosine is, however, compromised by major technical challenges during isolation and detection2. We recently introduced a nanopore peptide sequencing method that sensitively detects PTMs at the single-molecule level3. By translocating PTM variants of the plant pentapeptide hormone phytosulfokine (PSK) through a nanopore, we here demonstrate accurate identification of sulfation and phosphorylation on the two tyrosine residues of PSK. Sulfation can be clearly detected and distinguished (>90%) from phosphorylation on the same residue. Moreover, the presence or absence of PTMs on the two close-by tyrosine residues can be accurately determined (>96% accuracy). Our findings demonstrate the extraordinary sensitivity of nanopore protein measurements, providing a new tool for identifying sulfation on peptide phytohormones and promising wider applications to identify protein PTMs.

6.
Nat Commun ; 15(1): 2737, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548820

RESUMO

Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.


Assuntos
Bacillus subtilis , Segregação de Cromossomos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Segregação de Cromossomos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Replicação do DNA/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Origem de Replicação
7.
Nanoscale ; 16(9): 4890-4899, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323489

RESUMO

Cytoskeletal protein filaments such as actin and microtubules confer mechanical support to cells and facilitate many cellular functions such as motility and division. Recent years have witnessed the development of a variety of molecular scaffolds that mimic such filaments. Indeed, filaments that are programmable and compatible with biological systems may prove useful in studying or substituting such proteins. Here, we explore the use of ssRNA tiles to build and modify filaments in vitro. We engineer a number of functionalities that are crucial to the function of natural proteins filaments into the ssRNA tiles, including the abilities to assemble or disassemble filaments, to tune the filament stiffness, to induce membrane binding, and to bind proteins. This work paves the way for building dynamic cytoskeleton-mimicking systems made out of rationally designed ssRNA tiles that can be transcribed in natural or synthetic cells.


Assuntos
Citoesqueleto , Microtúbulos , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo
8.
Elife ; 122024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376900

RESUMO

The nuclear pore complex (NPC) regulates the selective transport of large biomolecules through the nuclear envelope. As a model system for nuclear transport, we construct NPC mimics by functionalizing the pore walls of freestanding palladium zero-mode waveguides with the FG-nucleoporin Nsp1. This approach enables the measurement of single-molecule translocations through individual pores using optical detection. We probe the selectivity of Nsp1-coated pores by quantitatively comparing the translocation rates of the nuclear transport receptor Kap95 to the inert probe BSA over a wide range of pore sizes from 35 nm to 160 nm. Pores below 55 ± 5 nm show significant selectivity that gradually decreases for larger pores. This finding is corroborated by coarse-grained molecular dynamics simulations of the Nsp1 mesh within the pore, which suggest that leakage of BSA occurs by diffusion through transient openings within the dynamic mesh. Furthermore, we experimentally observe a modulation of the BSA permeation when varying the concentration of Kap95. The results demonstrate the potential of single-molecule fluorescence measurements on biomimetic NPCs to elucidate the principles of nuclear transport.


Assuntos
Nanoporos , Poro Nuclear , Humanos , Membrana Nuclear , Biomimética , Difusão , Translocação Genética
9.
Nat Nanotechnol ; 19(3): 338-344, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37884658

RESUMO

Rotary motors play key roles in energy transduction, from macroscale windmills to nanoscale turbines such as ATP synthase in cells. Despite our abilities to construct engines at many scales, developing functional synthetic turbines at the nanoscale has remained challenging. Here, we experimentally demonstrate rationally designed nanoscale DNA origami turbines with three chiral blades. These DNA nanoturbines are 24-27 nm in height and diameter and can utilize transmembrane electrochemical potentials across nanopores to drive DNA bundles into sustained unidirectional rotations of up to 10 revolutions s-1. The rotation direction is set by the designed chirality of the turbine. All-atom molecular dynamics simulations show how hydrodynamic flows drive this turbine. At high salt concentrations, the rotation direction of turbines with the same chirality is reversed, which is explained by a change in the anisotropy of the electrophoretic mobility. Our artificial turbines operate autonomously in physiological conditions, converting energy from naturally abundant electrochemical potentials into mechanical work. The results open new possibilities for engineering active robotics at the nanoscale.


Assuntos
Nanoporos , Potenciais da Membrana , Simulação de Dinâmica Molecular , DNA/química
10.
Nat Nanotechnol ; 19(1): 70-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37798563

RESUMO

Membrane abscission, the final cut of the last connection between emerging daughter cells, is an indispensable event in the last stage of cell division and in other cellular processes such as endocytosis, virus release or bacterial sporulation. However, its mechanism remains poorly understood, impeding its application as a cell-division machinery for synthetic cells. Here we use fluorescence microscopy and fluorescence recovery after photobleaching measurements to study the in vitro reconstitution of the bacterial protein dynamin A inside liposomes. Upon external reshaping of the liposomes into dumbbells, dynamin A self-assembles at the membrane neck, resulting in membrane hemi-scission and even full scission. Dynamin A proteins constitute a simple one-component division machinery capable of splitting dumbbell-shaped liposomes, marking an important step towards building a synthetic cell.


Assuntos
Células Artificiais , Lipossomos , Dinaminas/metabolismo , Endocitose , Divisão Celular , Bactérias/metabolismo
11.
Nucleic Acids Res ; 52(1): 59-72, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000393

RESUMO

DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently, DNA occurs in closed topological forms where topology and supercoiling add a global constraint to the interplay of binding-induced deformations and strain-modulated binding. Here, we present a quantitative model with a straight-forward numerical implementation of how the global constraints introduced by DNA topology modulate binding. We focus on fluorescent intercalators, which unwind DNA and enable direct quantification via fluorescence detection. Our model correctly describes bulk experiments using plasmids with different starting topologies, different intercalators, and over a broad range of intercalator and DNA concentrations. We demonstrate and quantitatively model supercoiling-dependent binding in a single-molecule assay, where we directly observe the different intercalator densities going from supercoiled to nicked DNA. The single-molecule assay provides direct access to binding kinetics and DNA supercoil dynamics. Our model has broad implications for the detection and quantification of DNA, including the use of psoralen for UV-induced DNA crosslinking to quantify torsional tension in vivo, and for the modulation of DNA binding in cellular contexts.


Assuntos
DNA Super-Helicoidal , DNA , Fluorescência , Substâncias Intercalantes/química , Plasmídeos/genética
12.
Nucleic Acids Res ; 52(4): 1677-1687, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38084930

RESUMO

Transcription-coupled supercoiling of DNA is a key factor in chromosome compaction and the regulation of genetic processes in all domains of life. It has become common knowledge that, during transcription, the DNA-dependent RNA polymerase (RNAP) induces positive supercoiling ahead of it (downstream) and negative supercoils in its wake (upstream), as rotation of RNAP around the DNA axis upon tracking its helical groove gets constrained due to drag on its RNA transcript. Here, we experimentally validate this so-called twin-supercoiled-domain model with in vitro real-time visualization at the single-molecule scale. Upon binding to the promoter site on a supercoiled DNA molecule, RNAP merges all DNA supercoils into one large pinned plectoneme with RNAP residing at its apex. Transcription by RNAP in real time demonstrates that up- and downstream supercoils are generated simultaneously and in equal portions, in agreement with the twin-supercoiled-domain model. Experiments carried out in the presence of RNases A and H, revealed that an additional viscous drag of the RNA transcript is not necessary for the RNAP to induce supercoils. The latter results contrast the current consensus and simulations on the origin of the twin-supercoiled domains, pointing at an additional mechanistic cause underlying supercoil generation by RNAP in transcription.


Assuntos
DNA Bacteriano , DNA Super-Helicoidal , Transcrição Gênica , DNA/genética , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA
13.
FEMS Microbiol Rev ; 48(1)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38142222

RESUMO

Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (ParB) - regulates chromosome organization and chromosome segregation during the bacterial cell cycle. Over the past decades, research has greatly advanced our knowledge of the ParABS system. However, many intricate details of the mechanism of ParB proteins were only recently uncovered using in vitro single-molecule techniques. These approaches allowed the exploration of ParB proteins in precisely controlled environments, free from the complexities of the cellular milieu. This review covers the early developments of this field but emphasizes recent advances in our knowledge of the mechanistic understanding of ParB proteins as revealed by in vitro single-molecule methods. Furthermore, we provide an outlook on future endeavors in investigating ParB, ParB-like proteins, and their interaction partners.


Assuntos
Proteínas de Bactérias , Segregação de Cromossomos , Receptores Fc , DNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmídeos , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo
14.
Science ; 382(6671): 646-648, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943927

RESUMO

A potential mechanism of DNA loop extrusion by molecular motors is discussed.

15.
iScience ; 26(11): 108268, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026160

RESUMO

Bacteria that are resistant to antibiotics present an increasing burden on healthcare. To address this emerging crisis, novel rapid antibiotic susceptibility testing (AST) methods are eagerly needed. Here, we present an optical AST technique that can determine the bacterial viability within 1 h down to a resolution of single bacteria. The method is based on measuring intensity fluctuations of a reflected laser focused on a bacterium in reflective microwells. Using numerical simulations, we show that both refraction and absorption of light by the bacterium contribute to the observed signal. By administering antibiotics that kill the bacteria, we show that the variance of the detected fluctuations vanishes within 1 h, indicating the potential of this technique for rapid sensing of bacterial antibiotic susceptibility. We envisage the use of this method for massively parallelizable AST tests and fast detection of drug-resistant pathogens.

16.
ACS Nano ; 17(20): 20179-20193, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37791900

RESUMO

Single-molecule fluorescence imaging experiments generally require sub-nanomolar protein concentrations to isolate single protein molecules, which makes such experiments challenging in live cells due to high intracellular protein concentrations. Here, we show that single-molecule observations can be achieved in live cells through a drastic reduction in the observation volume using overmilled zero-mode waveguides (ZMWs- subwavelength-size holes in a metal film). Overmilling of the ZMW in a palladium film creates a nanowell of tunable size in the glass layer below the aperture, which cells can penetrate. We present a thorough theoretical and experimental characterization of the optical properties of these nanowells over a wide range of ZMW diameters and overmilling depths, showing an excellent signal confinement and a 5-fold fluorescence enhancement of fluorescent molecules inside nanowells. ZMW nanowells facilitate live-cell imaging as cells form stable protrusions into the nanowells. Importantly, the nanowells greatly reduce the cytoplasmic background fluorescence, enabling the detection of individual membrane-bound fluorophores in the presence of high cytoplasmic expression levels, which could not be achieved with TIRF microscopy. Zero-mode waveguide nanowells thus provide great potential to study individual proteins in living cells.


Assuntos
Microscopia , Nanotecnologia , Nanotecnologia/métodos , Imagem Individual de Molécula , Espectrometria de Fluorescência/métodos
17.
Nucleic Acids Res ; 51(21): 11856-11875, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37850647

RESUMO

In most bacteria, chromosome segregation is driven by the ParABS system where the CTPase protein ParB loads at the parS site to trigger the formation of a large partition complex. Here, we present in vitro studies of the partition complex for Bacillus subtilis ParB, using single-molecule fluorescence microscopy and AFM imaging to show that transient ParB-ParB bridges are essential for forming DNA condensates. Molecular Dynamics simulations confirm that condensation occurs abruptly at a critical concentration of ParB and show that multimerization is a prerequisite for forming the partition complex. Magnetic tweezer force spectroscopy on mutant ParB proteins demonstrates that CTP hydrolysis at the N-terminal domain is essential for DNA condensation. Finally, we show that transcribing RNA polymerases can steadily traverse the ParB-DNA partition complex. These findings uncover how ParB forms a stable yet dynamic partition complex for chromosome segregation that induces DNA condensation and segregation while enabling replication and transcription.


Assuntos
Cromossomos Bacterianos , Bactérias/genética , Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo
19.
Nat Biotechnol ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386295

RESUMO

Current methods to detect post-translational modifications of proteins, such as phosphate groups, cannot measure single molecules or differentiate between closely spaced phosphorylation sites. We detect post-translational modifications at the single-molecule level on immunopeptide sequences with cancer-associated phosphate variants by controllably drawing the peptide through the sensing region of a nanopore. We discriminate peptide sequences with one or two closely spaced phosphates with 95% accuracy for individual reads of single molecules.

20.
Sci Rep ; 13(1): 8100, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208374

RESUMO

DNA loop extrusion by structural-maintenance-of-chromosome (SMC) complexes has emerged as a primary organizing principle for chromosomes. The mechanism by which SMC motor proteins extrude DNA loops is still unresolved and much debated. The ring-like structure of SMC complexes prompted multiple models where the extruded DNA is topologically or pseudotopologically entrapped within the ring during loop extrusion. However, recent experiments showed the passage of roadblocks much bigger than the SMC ring size, suggesting a nontopological mechanism. Recently, attempts were made to reconcile the observed passage of large roadblocks with a pseudotopological mechanism. Here we examine the predictions of these pseudotopological models and find that they are not consistent with new experimental data on SMC roadblock encounters. Particularly, these models predict the formation of two loops and that roadblocks will reside near the stem of the loop upon encounter-both in contrast to experimental observations. Overall, the experimental data reinforce the notion of a nontopological mechanism for extrusion of DNA.


Assuntos
Cromossomos , DNA , Cromossomos/metabolismo , DNA/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...