Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33558292

RESUMO

Global infections by non-tuberculous mycobacteria (NTM) are steadily rising. New drugs are needed to treat NTM infections, but the NTM drug pipeline remains poorly populated and focused on repurposing or reformulating approved antibiotics. We sought to accelerate de novo NTM drug discovery by testing advanced compounds with established activity against Mycobacterium tuberculosis 3-aminomethyl 4-halogen benzoxaboroles, a novel class of leucyl-tRNA synthetase inhibitors, were recently discovered as active against M. tuberculosis Here, we report that the benzoxaborole EC/11770 is not only a potent anti-tubercular agent but is active against the M. abscessus and M. avium complexes. Focusing on M. abscessus, which causes the most difficult-to-cure NTM disease, we show that EC/11770 retained potency against drug-tolerant biofilms in vitro and was effective in a mouse lung infection model. Resistant mutant selection experiments showed a low frequency of resistance and confirmed leucyl-tRNA synthetase as the target. This work establishes the benzoxaborole EC/11770 as a novel preclinical candidate for the treatment of NTM lung disease and tuberculosis and validates leucyl-tRNA synthetase as an attractive target for the development of broad-spectrum anti-mycobacterials.

2.
Molecules ; 27(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889319

RESUMO

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is one of the most devastating infectious agents in the world. Chemical-genetic characterization through in vitro evolution combined with whole genome sequencing analysis was used identify novel drug targets and drug resistance genes in Mtb associated with its intracellular growth in human macrophages. We performed a genome analysis of 53 Mtb mutants resistant to 15 different hit compounds. We found nonsynonymous mutations/indels in 30 genes that may be associated with drug resistance acquisitions. Beyond confirming previously identified drug resistance mechanisms such as rpoB and lead targets reported in novel anti-tuberculosis drug screenings such as mmpL3, ethA, and mbtA, we have discovered several unrecognized candidate drug targets including prrB. The exploration of the Mtb chemical mutant genomes could help novel drug discovery and the structural biology of compounds and associated mechanisms of action relevant to tuberculosis treatment.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Humanos , Mutação INDEL , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia
3.
Antimicrob Agents Chemother ; 65(12): e0151421, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34606340

RESUMO

Fluoroquinolones-the only clinically used DNA gyrase inhibitors-are effective against tuberculosis (TB) but are in limited clinical use for nontuberculous mycobacteria (NTM) lung infections due to intrinsic drug resistance. We sought to test alternative DNA gyrase inhibitors for anti-NTM activity. Mycobacterium tuberculosis gyrase inhibitors (MGIs), a subclass of novel bacterial topoisomerase inhibitors (NBTIs), were recently shown to be active against the tubercle bacillus. Here, we show that the MGI EC/11716 not only has potent anti-tubercular activity but is active against M. abscessus and M. avium in vitro. Focusing on M. abscessus, which causes the most difficult to cure NTM disease, we show that EC/11716 is bactericidal, active against drug-tolerant biofilms, and efficacious in a murine model of M. abscessus lung infection. Based on resistant mutant selection experiments, we report a low frequency of resistance to EC/11716 and confirm DNA gyrase as its target. Our findings demonstrate the potential of NBTIs as anti-M. abscessus and possibly broad-spectrum anti-mycobacterial agents.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Animais , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Micobactérias não Tuberculosas , Tioinosina/análogos & derivados , Inibidores da Topoisomerase II/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...