Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(5)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38266285

RESUMO

Objective.The aim of this work was to determine heterogeneous correction factorshQclin,Qreffclin,frefdetm,wto validate absorbed dose-to-mediumDm,Qclinm,fclincalculation algorithms from detector readings. The impact of detector orientation perpendicular and parallel to the beam central axis on the correction factors was also investigated.Approach.ThehQclin,Qreffclin,frefdetm,wfactors were calculated for four types of detectors (PTW PinPoint T31016, PTW microDiamond T60019, PTW microSilicon T60023 and EBT3 film) placed in different media (cortical bone, lung, adipose tissue, Teflon and RW3) for the 6 MV energy beam with a 10 × 10 cm2field size. These corrections were then applied to the detector measurements performed at different depths in heterogeneous phantoms.Main results.ThehQclin,Qreffclin,frefdetm,wfactors mainly depended on the media and slightly on the type of detector. Considering all detectors, the largest corrections were found in high-density media with values ranging from 0.911 to 0.934 in cortical bone. For comparison, the corrections in other media were closer to unity with values from 0.966 (lung and RW3) to 0.991 (adipose tissue). Except for the PinPoint T31016, detector orientation-dependence was observed especially in high-density media. A good agreement (≤1.5%) was found betweenDm,Qclinm,fclincalculations and the detector readings corrected with thehQclin,Qreffclin,frefdetm,wfactor for all studied heterogeneous phantoms.Significance.This paper could serve as an initial guideline for medical physicists involved in the validation of the advanced type-b dose calculation algorithms reportingDm,Qclinm,fclin. To our knowledge, this is the first study to assess the impact of the orientation of different detectors in heterogeneous media. The orientation dependence of the detector response observed in water may not reflect what is observed in heterogeneous media, especially in high-density media. The knowledge of thehQclin,Qreffclin,frefdetm,wfactors becomes mandatory for accurate interpretation of detector readings and comparisons withDm,Qclinm,fclincalculations.


Assuntos
Fótons , Radiometria , Radiometria/métodos , Método de Monte Carlo , Algoritmos , Imagens de Fantasmas
2.
Phys Med Biol ; 67(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35294937

RESUMO

Objective.The aim of this study was to determine field output correction factorskQclin,Qreffclin,frefand electron fluence perturbation for new PTW unshielded microSilicon and shielded microSilicon X detectors.Approach.kQclin,Qreffclin,freffactors were calculated for 6 and 10 MV with and without flattening filter beams delivered by a TrueBeam STx. Correction factors were determined for field sizes ranging from 0.5 × 0.5 cm2to 3 × 3 cm2using both experimental and numerical methods. To better understand the underlying physics of their response, total electron (+positron) fluence spectra were scored in the sensitive volume considering the various component-dependent perturbations.Main results.The microSilicon and microSilicon X detectors can be used down to the smallest studied field size by applying corrections factors fulfilling the tolerance of 5% recommended by the IAEA TRS483. Electron fluence perturbation in both microSilicon detectors was greater than that in water but to a lesser extent than their predecessors. The main contribution of the overall perturbation of the detectors comes from the materials surrounding their sensitive volume, especially the epoxy in the case of unshielded diodes and the shielding for shielded diodes. This work demonstrated that the decrease in the density of the epoxy for the microSilicon led to a decrease in the electron fluence perturbation.Significance.A real improvement was observed regarding the design of the microSilicon and microSilicon X detectors compared to their predecessors.


Assuntos
Elétrons , Radiometria , Método de Monte Carlo , Fótons , Radiometria/métodos , Água
3.
Phys Med ; 89: 211-218, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34416389

RESUMO

PURPOSE: Monte Carlo (MC) is the reference computation method for medical physics. In radiotherapy, MC computations are necessary for some issues (such as assessing figures of merit, double checks, and dose conversions). A tool based on GATE is proposed to easily create full MC simulations of the Varian TrueBeam STx. METHODS: GAMMORA is a package that contains photon phase spaces as a pre-trained generative adversarial network (GAN) and the TrueBeam's full geometry. It allows users to easily create MC simulations for simple or complex radiotherapy plans such as VMAT. To validate the model, the characteristics of generated photons are first compared to those provided by Varian (IAEA format). Simulated data are also compared to measurements in water and heterogeneous media. Simulations of 8 SBRT plans are compared to measurements (in a phantom). Two examples of applications (a second check and interplay effect assessment) are presented. RESULTS: The simulated photons generated by the GAN have the same characteristics (energy, position, and direction) as the IAEA data. Computed dose distributions of simple cases (in water) and complex plans delivered in a phantom are compared to measurements, and the Gamma index (3%/3mm) was always superior to 98%. The feasibility of both clinical applications is shown. CONCLUSIONS: This model is now shared as a free and open-source tool that generates radiotherapy MC simulations. It has been validated and used for five years. Several applications can be envisaged for research and clinical purposes.


Assuntos
Fótons , Planejamento da Radioterapia Assistida por Computador , Simulação por Computador , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Água
4.
Phys Med Biol ; 66(4): 045009, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33296874

RESUMO

The benefits of using an algorithm that reports absorbed dose-to-medium have been jeopardized by the clinical experience and the experimental protocols that have mainly relied on absorbed dose-to-water. The aim of the present work was to investigate the physical aspects that govern the dosimetry in heterogeneous media using Monte Carlo method and to introduce a formalism for the experimental validation of absorbed dose-to-medium reporting algorithms. Particle fluence spectra computed within the sensitive volume of two simulated detectors (T31016 Pinpoint 3D ionization chamber and EBT3 radiochromic film) placed in different media (water, RW3, lung and bone) were compared to those in the undisturbed media for 6 MV photon beams. A heterogeneity correction factor that takes into account the difference between the detector perturbation in medium and under reference conditions as well as the stopping-power ratios was then derived for all media using cema calculations. Furthermore, the different conversion approaches and Eclipse treatment planning system algorithms were compared against the Monte Carlo absorbed dose reports. The detectors electron fluence perturbation in RW3 and lung media were close to that in water (≤1.5%). However, the perturbation was greater in bone (∼4%) and impacted the spectral shape. It was emphasized that detectors readings should be corrected by the heterogeneity correction factor that ranged from 0.932 in bone to 0.985 in lung. Significant discrepancies were observed between all the absorbed dose reports and conversions, especially in bone (exceeding 10%) and to a lesser extent in RW3. Given the ongoing advances in dose calculation algorithms, it is essential to standardize the absorbed dose report mode with absorbed dose-to-medium as a favoured choice. It was concluded that a retrospective conversion should be avoided and switching from absorbed dose-to-water to absorbed dose-to-medium reporting algorithm should be carried out by a direct comparison of both algorithms.


Assuntos
Fótons , Doses de Radiação , Projetos de Pesquisa/normas , Algoritmos , Humanos , Método de Monte Carlo , Padrões de Referência , Água
5.
Phys Med Biol ; 64(19): 195016, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31437832

RESUMO

The method implemented in Monte Carlo (MC) algorithm to convert dose-to-medium (D m) to dose-to-water (D w) is usually based on the Bragg-Gray cavity theory. Acuros XB (AXB) reports also D m and D w but the method to calculate D w is based on the energy deposition cross sections for water in place of those for the local media. For both algorithms, the calculation of D w in non-water media is similar to the dose received in a small volume of water, small enough not to disturb the fluence of charged particles. Recently, two new methods revised the Bragg-Gray cavity theory, one proposed by Andreo and the other by Reynaert et al. In this context, comparisons between AXB and MC were carried out in terms of dose-to-medium ([Formula: see text]) and dose-to-water ([Formula: see text]), respectively. Multilayer slab heterogeneous phantoms made of lung, bone and polytetrafluoroethylene (PTFE) were investigated and measurements were carried out using radiochromic films. These latter were then compared to [Formula: see text] and to D w which would be obtained according to the conversion methods proposed by Andreo and Reynaert et al [Formula: see text] agreed with [Formula: see text] for all cases (±1%). In lung, all D w calculations and film measurements were in agreement. By contrast, [Formula: see text] and [Formula: see text] differed notably in bone (4.5%) and PTFE (3.5%), and both algorithms overestimated film measurements. These findings demonstrate that the conversion method is different between AXB and MC. Furthermore, films were not able to give dose in a small volume of water according to the definition of [Formula: see text] and [Formula: see text]. Applying either the fluence correction factor suggested by Andreo or the mass energy absorption ratios proposed by Reynaert et al, resulted in a good agreement (<1%) with film measurements. According to the method used for the conversion, different D w could be obtained which might lead to several issues in clinical context.


Assuntos
Osso e Ossos/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Politetrafluoretileno/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...