Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(3): 1173-1188, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36715327

RESUMO

The DNA mismatch repair protein MutSα recognizes wrongly incorporated DNA bases and initiates their correction during DNA replication. Dysfunctions in mismatch repair lead to a predisposition to cancer. Here, we study the homozygous mutation V63E in MSH2 that was found in the germline of a patient with suspected constitutional mismatch repair deficiency syndrome who developed colorectal cancer before the age of 30. Characterization of the mutant in mouse models, as well as slippage and repair assays, shows a mildly pathogenic phenotype. Using cryogenic electron microscopy and surface plasmon resonance, we explored the mechanistic effect of this mutation on MutSα function. We discovered that V63E disrupts a previously unappreciated interface between the mismatch binding domains (MBDs) of MSH2 and MSH6 and leads to reduced DNA binding. Our research identifies this interface as a 'safety lock' that ensures high-affinity DNA binding to increase replication fidelity. Our mechanistic model explains the hypomorphic phenotype of the V63E patient mutation and other variants in the MBD interface.


Assuntos
Reparo de Erro de Pareamento de DNA , Reparo do DNA , Proteína 2 Homóloga a MutS , Animais , Camundongos , DNA/química , Mutação , Proteína 2 Homóloga a MutS/metabolismo
2.
Gut Microbes ; 14(1): 2035660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188867

RESUMO

The gut microbiota strongly impacts the development of sporadic colorectal cancer (CRC), but it is largely unknown how the microbiota affects the pathogenesis of mismatch-repair-deficient CRC in the context of Lynch syndrome. In a mouse model for Lynch syndrome, we found a nearly complete loss of intestinal tumor development when animals were transferred from a conventional "open" animal facility to specific-pathogen-free (SPF) conditions. Using 16S sequencing we detected large changes in microbiota composition between the two facilities. Transcriptomic analyses of tumor-free intestinal tissues showed signs of strong intestinal inflammation in conventional mice. Whole exome sequencing of tumors developing in Msh2-Lynch mice revealed a much lower mutational load in the single SPF tumor than in tumors developing in conventional mice, suggesting reduced epithelial proliferation in SPF mice. Fecal microbiota transplantations with conventional feces altered the immune landscape and gut homeostasis, illustrated by increased gut length and elevated epithelial proliferation and migration. This was associated with drastic changes in microbiota composition, in particular increased relative abundances of different mucus-degrading taxa such as Desulfovibrio and Akkermansia, and increased bacterial-epithelial contact. Strikingly, transplantation of conventional microbiota increased microsatellite instability in untransformed intestinal epithelium of Msh2-Lynch mice, indicating that the composition of the microbiota influences the rate of mutagenesis in MSH2-deficient crypts.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Microbioma Gastrointestinal , Animais , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Modelos Animais de Doenças , Camundongos , Proteína 2 Homóloga a MutS/genética , Mutagênese , Mutagênicos
3.
Elife ; 72018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30322449

RESUMO

In cancer cells, loss of G1/S control is often accompanied by p53 pathway inactivation, the latter usually rationalized as a necessity for suppressing cell cycle arrest and apoptosis. However, we found an unanticipated effect of p53 loss in mouse and human G1-checkpoint-deficient cells: reduction of DNA damage. We show that abrogation of the G1/S-checkpoint allowed cells to enter S-phase under growth-restricting conditions at the expense of severe replication stress manifesting as decelerated DNA replication, reduced origin firing and accumulation of DNA double-strand breaks. In this system, loss of p53 allowed mitogen-independent proliferation, not by suppressing apoptosis, but rather by restoring origin firing and reducing DNA breakage. Loss of G1/S control also caused DNA damage and activation of p53 in an in vivo retinoblastoma model. Moreover, in a teratoma model, loss of p53 reduced DNA breakage. Thus, loss of p53 may promote growth of incipient cancer cells by reducing replication-stress-induced DNA damage.


Assuntos
Dano ao DNA/genética , Replicação do DNA/genética , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Humanos , Camundongos , Neoplasias/patologia , Fase S/genética , Teratoma/genética , Teratoma/patologia
4.
Fam Cancer ; 16(2): 221-229, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27873144

RESUMO

Missense variants of DNA mismatch repair (MMR) genes pose a problem in clinical genetics as long as they cannot unambiguously be assigned as the cause of Lynch syndrome (LS). To study such variants of uncertain clinical significance, we have developed a functional assay based on direct measurement of MMR activity in mouse embryonic stem cells expressing mutant protein from the endogenous alleles. We have applied this protocol to a specific truncation mutant of MSH2 that removes 60 C-terminal amino acids and has been found in suspected LS families. We show that the stability of the MSH2/MSH6 heterodimer is severely perturbed, causing attenuated MMR in in vitro assays and cancer predisposition in mice. This mutation can therefore unambiguously be considered as deleterious and causative for LS.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Predisposição Genética para Doença , Proteína 2 Homóloga a MutS/genética , Alelos , Animais , Linhagem Celular , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Proteína 2 Homóloga a MutS/metabolismo , Mutação de Sentido Incorreto
5.
Gastroenterology ; 147(5): 1064-72.e5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25088490

RESUMO

BACKGROUND & AIMS: Lynch syndrome, a nonpolyposis form of hereditary colorectal cancer, is caused by inherited defects in DNA mismatch repair (MMR) genes. Most patients carry a germline mutation in 1 allele of the MMR genes MSH2 or MLH1. With spontaneous loss of the wild-type allele, cells with defects in MMR exist among MMR-proficient cells, as observed in healthy intestinal tissues from patients with Lynch syndrome. We aimed to create a mouse model of this situation to aid in identification of environmental factors that affect MMR-defective cells and their propensity for oncogenic transformation. METHODS: We created mice in which the MMR gene Msh2 can be inactivated in a defined fraction of crypt base columnar stem cells to generate MSH2-deficient intestinal crypts among an excess of wild-type crypts (Lgr5-CreERT2;Msh2(flox/-) mice). Intestinal tissues were collected; immunohistochemical analyses were performed for MSH2, along with allele-specific PCR assays. We traced the fate of MSH2-deficient crypts under the influence of different external factors. RESULTS: Lgr5-CreERT2;Msh2(flox/-) mice developed more adenomas and adenocarcinomas than control mice; all tumors were MSH2 deficient. Exposure of Lgr5-CreERT2;Msh2(flox/-) mice to the methylating agent temozolomide caused MSH2-deficient intestinal stem cells to proliferate more rapidly than wild-type stem cells. The MSH2-deficient intestinal stem cells were able to colonize the intestinal epithelium and many underwent oncogenic transformation, forming intestinal neoplasias. CONCLUSIONS: We developed a mouse model of Lynch syndrome (Lgr5-CreERT2;Msh2(flox/-) mice) and found that environmental factors can modify the number and mutability of the MMR-deficient stem cells. These findings provide evidence that environmental factors can promote development of neoplasias and tumors in patients with Lynch syndrome.


Assuntos
Adenocarcinoma/induzido quimicamente , Adenocarcinoma/genética , Adenoma/induzido quimicamente , Adenoma/genética , Neoplasias Colorretais Hereditárias sem Polipose/induzido quimicamente , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Dacarbazina/análogos & derivados , Intestinos/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenoma/metabolismo , Adenoma/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Dacarbazina/toxicidade , Modelos Animais de Doenças , Feminino , Mucosa Intestinal/metabolismo , Intestinos/patologia , Masculino , Camundongos Knockout , Proteína 2 Homóloga a MutS/deficiência , Proteína 2 Homóloga a MutS/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Risco , Temozolomida , Fatores de Tempo
6.
Cancer Res ; 74(18): 5266-76, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25056122

RESUMO

The retinoblastoma protein pRB and its two homologs p130 and p107 form the family of pocket proteins and play a major role in cell-cycle regulation and suppression of human and mouse tumorigenesis. Pocket proteins regulate the activity of E2F transcription factors during G1-S transition. Two mechanisms have been described: (i) pocket protein binding blocks the transactivation domain of activator E2Fs, inhibiting E2F-dependent transcription and (ii) E2F-bound pocket proteins can recruit chromatin remodeling proteins containing an LxCxE motif (x encoding any amino acid), resulting in active repression of E2F target genes. To investigate the importance of pRB's LxCxE-interacting motif in cell-cycle control and tumor suppression, we generated mouse embryonic fibroblasts and mice expressing a mutant pRB protein carrying an asparagine for phenylalanine substitution at position 750, abrogating LxCxE binding. Because p130 may compensate for loss of pRB, we studied pRB(N750F) activity in the presence and absence of p130. The pRB-LxCxE interaction was not required for cell-cycle arrest upon mitogen deprivation and cell-cell contact, but did contribute to RAS(V12)- and radiation-induced cell-cycle arrest. Remarkably, the pRB-LxCxE interaction was not required for suppression of in vitro and in vivo transformation, even in the absence of p130. These results indicate that pRB's tumor suppressor activity is not effectuated by active silencing of E2F target genes, but rather by regulation of activator E2Fs or another unidentified mechanism. Furthermore, the in vitro response of pocket protein-perturbed cells to mitogen deprivation and cell-cell contact seems a better predictor of tumor development than the response to ectopic RAS(V12) expression. Cancer Res; 74(18); 5266-76. ©2014 AACR.


Assuntos
Fatores de Transcrição E2F/genética , Proteína do Retinoblastoma/genética , Animais , Processos de Crescimento Celular/genética , Fatores de Transcrição E2F/metabolismo , Inativação Gênica , Humanos , Camundongos , Proteína do Retinoblastoma/metabolismo , Transfecção
7.
J Pathol ; 226(1): 28-39, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21915857

RESUMO

Fanconi anaemia (FA) is a rare recessive disorder marked by developmental abnormalities, bone marrow failure, and a high risk for the development of leukaemia and solid tumours. The inactivation of FA genes, in particular FANCF, has also been documented in sporadic tumours in non-FA patients. To study whether there is a causal relationship between FA pathway defects and tumour development, we have generated a mouse model with a targeted disruption of the FA core complex gene Fancf. Fancf-deficient mouse embryonic fibroblasts displayed a phenotype typical for FA cells: they showed an aberrant response to DNA cross-linking agents as manifested by G(2) arrest, chromosomal aberrations, reduced survival, and an inability to monoubiquitinate FANCD2. Fancf homozygous mice were viable, born following a normal Mendelian distribution, and showed no growth retardation or developmental abnormalities. The gonads of Fancf mutant mice functioned abnormally, showing compromised follicle development and spermatogenesis as has been observed in other FA mouse models and in FA patients. In a cohort of Fancf-deficient mice, we observed decreased overall survival and increased tumour incidence. Notably, in seven female mice, six ovarian tumours developed: five granulosa cell tumours and one luteoma. One mouse had developed tumours in both ovaries. High-resolution array comparative genomic hybridization (aCGH) on these tumours suggests that the increased incidence of ovarian tumours correlates with the infertility in Fancf-deficient mice and the genomic instability characteristic of FA pathway deficiency.


Assuntos
Proteína do Grupo de Complementação F da Anemia de Fanconi/genética , Tumor de Células da Granulosa/genética , Luteoma/genética , Neoplasias Ovarianas/genética , Animais , Hibridização Genômica Comparativa , Modelos Animais de Doenças , Proteína do Grupo de Complementação F da Anemia de Fanconi/deficiência , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Hum Mol Genet ; 18(18): 3484-95, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19561169

RESUMO

The Fanconi anemia (FA) core complex member FANCM remodels synthetic replication forks and recombination intermediates. Thus far, only one FA patient with FANCM mutations has been described, but the relevance of these mutations for the FA phenotype is uncertain. To provide further experimental access to the FA-M complementation group we have generated Fancm-deficient mice by deleting exon 2. FANCM deficiency caused hypogonadism in mice and hypersensitivity to cross-linking agents in mouse embryonic fibroblasts (MEFs), thus phenocopying other FA mouse models. However, Fancm(Delta2/Delta2) mice also showed unique features atypical for FA mice, including underrepresentation of female Fancm(Delta2/Delta2) mice and decreased overall and tumor-free survival. This increased cancer incidence may be correlated to the role of FANCM in the suppression of spontaneous sister chromatid exchanges as observed in MEFs. In addition, FANCM appeared to have a stimulatory rather than essential role in FANCD2 monoubiquitination. The FA-M mouse model presented here suggests that FANCM functions both inside and outside the FA core complex to maintain genome stability and to prevent tumorigenesis.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/deficiência , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Alelos , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário/anormalidades , Ovário/metabolismo , Fenótipo , Troca de Cromátide Irmã , Taxa de Sobrevida , Testículo/anormalidades , Testículo/metabolismo
9.
Cancer Res ; 67(19): 9244-7, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17909031

RESUMO

Loss of activity of the retinoblastoma pathway is a common event in human cancer. Mouse models have revealed that tumorigenesis by loss of Rb was accelerated by concomitant loss of the cell cycle inhibitor p27KIP1. This has been attributed to reduced apoptosis and weakening of the G1 checkpoint. However, the role of p27KIP1 in a recently identified G2 restriction point may offer an alternative explanation for this synergy. Here, we have investigated the significance of the G2 restriction point in Rb-deficient pituitaries. We show that Rb loss in the pituitary gland activated the G2 restriction point, as evidenced by the appearance of cyclin B1-p27KIP1 complexes. Somewhat unexpectedly, these complexes remained present in Rb-deficient tumors. These results indicate that the G2 restriction point does operate in vivo. However, in the pituitary gland, this mechanism seems to retard rather than to prevent tumor growth.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/deficiência , Fase G2/genética , Neoplasias Hipofisárias/patologia , Proteína do Retinoblastoma/deficiência , Animais , Transformação Celular Neoplásica/genética , Ciclina B/metabolismo , Ciclina B1 , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Camundongos , Hipófise/citologia , Hipófise/metabolismo , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...