Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 47(29): 9665-9676, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29974095

RESUMO

We report on the synthesis of new dinucleating phenol-based "end-off" compartmental ligands HLMeH and HLMe2 bearing two different binding sites, one bis(2-methylpyridyl)aminomethyl (BPA) and one thiosemicarbazone (TSC) site, and their corresponding copper(ii) complexes 1t and 2d. With the ligand HLMeH, a tetranuclear entity (1t) has been isolated in the solid state, whereas with HLMe2, which differs from HLMeH by a methyl substituent on the N-terminal amino group of the TSC arm, a dinuclear form (2d) is obtained. X-ray crystallography analysis shows that the nuclearity di vs. tetra is modulated by interactions between copper atoms and hydroxido bridges along with the sulphur atoms of TSC arms. From a magnetic point of view, 1t can be considered as an association of two dinuclear forms leading for both complexes to overall antiferromagnetic coupling. Analysis in acetonitrile solution of structure-property relationships has been carried out by comparing their UV/Vis, electrochemistry, ESI-MS, and NMR (variable temperature and DOSY = diffusion ordered spectroscopy) properties with trends from computational calculations (DFT). HRMAS-DOSY (High Resolution Magic Angle Spinning) NMR spectroscopy has been performed to evaluate the presence of different species in solution at room temperature.

2.
Chem Sci ; 8(4): 3031-3037, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451371

RESUMO

CuII2(µ-η2:η2-peroxido) and CuIII2(µ-oxido)2 cores represent key intermediates in copper/dioxygen chemistry, and they are mechanistically important for biological hydroxylation and oxidation reactions mediated by dinuclear (type III) copper metalloenzymes. While the exact nature of the active species in different enzymes is still under debate, shifting equilibria between Cu x /O2 species is increasingly recognized as a means of switching between distinct reactivity patterns of these intermediates. Herein we report comprehensive spectroscopic, crystallographic and computational analysis of a family of synthetic CuII2(µ-η2:η2-peroxido) and CuIII2(µ-oxido)2 dicopper complexes with a bis(oxazoline) (BOX) capping ligand. In particular, we demonstrate that a reversible peroxido/bis(µ-oxido) interconversion of the [Cu2O2] core can be triggered by peripheral (de)protonation events on the ligand backbone. As the copper ions in the enzymes are typically supported by histidine imidazoles that offer a backside N atom amenable to potential (de)protonation, it is well conceivable that the shifting of equilibria between the [Cu2O2] species in response to changes in local pH is biologically relevant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...