Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 318: 111208, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35351298

RESUMO

Boron (B) deficiency and aluminum (Al) toxicity are two major constraints on plants grown in acidic soils. B supply mitigates Al toxicity; however, the underlying mechanisms of this process remain elusive. In this work, Pisum sativum plants were used to address this issue. In the absence of pH buffers, B supply had a better mitigation effect on Al-induced root inhibition at pH 4.0 than pH 4.8. However, in MES buffered solution, mitigating effects of B on Al-induced root inhibition were more pronounced at pH 4.8, indicating a strong pH dependency of this process. Quantification of pH-dependent accumulation of Al in various root zones, modification of root pH by an exogenous addition of rapid alkalization factor (RALF), and measuring changes in the rhizosphere pH by fluorescent dyes have revealed operation of two concurrent mechanisms to explain alleviation of the inhibition of root elongation induced by Al toxicity by boron: (1) via enhancing rhizosphere pH under strong acidic stress (pH4.0), and (2) via stabilizing of cell wall by cross-linking with RGII at relatively higher pH (4.8). These findings provide scientific basis and support for the application of B fertilizers in the regions with inherited soil acidity.


Assuntos
Alumínio , Boro , Alumínio/toxicidade , Boro/toxicidade , Concentração de Íons de Hidrogênio , Pisum sativum , Raízes de Plantas/fisiologia
2.
Plant Cell Environ ; 43(12): 2957-2968, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33043459

RESUMO

Soil salinization is a major threat to global food security and the biodiversity of natural ecosystems. To adapt to salt stress, plants rely on ROS-mediated signalling networks that operate upstream of a broad array of physiological and genetic processes. A key player in ROS signalling is NADPH oxidase, a plasma-membrane-bound enzyme encoded by RBOH genes. In this study, we have conducted a comprehensive bioinformatic analysis of over 50 halophytic and glycophytic species to link the difference in the kinetics of ROS signalling between contrasting species with the abundance and/or structure of NADPH oxidases. The RBOH proteins were predicted in all the tested plant lineages except some algae species from the Rhodophyta, Chlorophyta and Streptophyta. Within the glycophytic group, the number of RBOH copies correlated negatively with salinity stress tolerance, suggesting that a reduction in the number of RBOH isoforms may be potentially related to the evolution of plant salinity tolerance. While halophytes did not develop unique protein families during evolution, they evolved additional phosphorylation target sites at the N-termini of NADPH oxidases, potentially modulating enzyme activity and allowing more control over their function, resulting in more efficient ROS signalling and adaptation to saline conditions.


Assuntos
NADPH Oxidases/fisiologia , Plantas Tolerantes a Sal/enzimologia , Evolução Biológica , NADPH Oxidases/genética , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia
3.
Front Plant Sci ; 11: 613936, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537049

RESUMO

Helianthus annuus L. is an important oilseed crop, which exhibits moderate salt tolerance and can be cultivated in areas affected by salinity. Using patch-clamp electrophysiology, we have characterized Na+ influx and K+ efflux conductances in protoplasts of salt-tolerant H. annuus L. hybrid KBSH-53 under high salinity. This work demonstrates that the plasma membrane of sunflower root cells has a classic set of ionic conductances dominated by K+ outwardly rectifying channels (KORs) and non-selective cation channels (NSCCs). KORs in sunflower show extreme Na+ sensitivity at high extracellular [Ca2+] that can potentially have a positive adaptive effect under salt stress (decreasing K+ loss). Na+ influx currents in sunflower roots demonstrate voltage-independent activation, lack time-dependent component, and are sensitive to Gd3+. Sunflower Na+-permeable NSCCs mediate a much weaker Na+ influx currents on the background of physiological levels of Ca2+ as compared to other species. This suggests that sunflower NSCCs have greater Ca2+ sensitivity. The responses of Na+ influx to Ca2+ correlates well with protection of sunflower growth by external Ca2+ in seedlings treated with NaCl. It can be, thus, hypothesized that NaCl tolerance in sunflower seedling roots is programmed at the ion channel level via their sensitivity to Ca2+ and Na+.

4.
Int J Mol Sci ; 20(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086058

RESUMO

Glycation can be defined as an array of non-enzymatic post-translational modifications of proteins formed by their interaction with reducing carbohydrates and carbonyl products of their degradation. Initial steps of this process rely on reducing sugars and result in the formation of early glycation products-Amadori and Heyns compounds via Schiff base intermediates, whereas their oxidative degradation or reactions of proteins with α-dicarbonyl compounds yield a heterogeneous group of advanced glycation end products (AGEs). These compounds accompany thermal processing of protein-containing foods and are known to impact on ageing, pathogenesis of diabetes mellitus and Alzheimer's disease in mammals. Surprisingly, despite high tissue carbohydrate contents, glycation of plant proteins was addressed only recently and its physiological role in plants is still not understood. Therefore, here we summarize and critically discuss the first steps done in the field of plant protein glycation during the last decade. We consider the main features of plant glycated proteome and discuss them in the context of characteristic metabolic background. Further, we address the possible role of protein glycation in plants and consider its probable contribution to protein degradation, methylglyoxal and sugar signalling, as well as interplay with antioxidant defense.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Proteínas de Plantas/metabolismo , Açúcares/metabolismo , Aldeído Pirúvico/metabolismo , Transdução de Sinais/fisiologia
5.
Steroids ; 146: 92-98, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30951761

RESUMO

Late stage CH functionalization is a powerful tool for modification of natural compounds. Herein we report that the rhodium-catalyzed reaction of brassinosteroids with aryloxysulfonamides proceeds regio- and stereoselectively at C15 position. The derivative obtained from 24-epibrassinolide was easily transformed to the conjugate with a BODIPY dye bearing unaffected functional groups of the native brassinosteroid.


Assuntos
Brassinosteroides/química , Compostos de Boro/química , Catálise , Ródio/química , Estereoisomerismo
6.
Funct Plant Biol ; 46(6): 533-542, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940327

RESUMO

Phosphatidic acids (PAs) are a key intermediate in phospholipid biosynthesis, and a central element in numerous signalling pathways. Functions of PAs are related to their fundamental role in molecular interactions within cell membranes modifying membrane bending, budding, fission and fusion. Here we tested the hypothesis that PAs are capable of direct transport of ions across bio-membranes. We have demonstrated that PAs added to the maize plasma membrane vesicles induced ionophore-like transmembrane transport of Ca2+, H+ and Mg2+. PA-induced Ca2+ fluxes increased with an increasing PAs acyl chain unsaturation. For all the PAs analysed, the effect on Ca2+ permeability increased with increasing pH (pH 8.0>pH 7.2>pH 6.0). The PA-induced Ca2+, Mg2+ and H+ permeability was also more pronounced in the endomembrane vesicles as compared with the plasma membrane vesicles. Addition of PA to protoplasts from Arabidopsis thaliana (L.) Heynh. roots constitutively expressing aequorin triggered elevation of the cytosolic Ca2+ activity, indicating that the observed PA-dependent Ca2+ transport occurs in intact plants.


Assuntos
Cálcio , Ácidos Fosfatídicos , Equorina , Membrana Celular , Protoplastos
7.
Funct Plant Biol ; 46(8): 695-701, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31029180

RESUMO

Human beings and plants experience a variety of stress conditions and adapt themselves through novel molecular crosstalk in their cellular constituents. Nitric oxide (NO), haemoglobin and melatonin interact with each other not only in blood stream of human beings, but also in the cells and metabolically active conducting strands of plants. Specialised sites of biosynthesis and differential intracellular spatial distribution of these molecules have been clearly demonstrated by the authors in plant systems. This has led to an understanding of the role of these molecules under salt stress conditions experienced by plants: NO is a modulator of enzyme activity through S-nitrosylation and tyrosine nitration, haemoglobin (phytoglobin) is an NO scavenger, and melatonin is a reactive oxygen species (ROS) scavenger involved in key crosstalk in both plants and humans facing stress. Our recent work on heme oxygenase (HO) activity modulation by stress in plants, and its interaction with NO, further demonstrates common features of molecular crosstalk in protecting plants and human beings from stress.


Assuntos
Melatonina , Óxido Nítrico , Humanos , Plantas , Espécies Reativas de Oxigênio , Estresse Fisiológico
8.
Int J Mol Sci ; 20(3)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736310

RESUMO

Waterlogging is a serious environmental problem that limits agricultural production in low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders focused on traits providing adequate supply of oxygen to roots under waterlogging conditions, such as enhanced aerenchyma formation or reduced radial oxygen loss. However, reduced oxygen concentration in waterlogged soils also leads to oxygen deficiency in plant tissues, resulting in an excessive accumulation of reactive oxygen species (ROS) in plants. To the best of our knowledge, this trait has never been targeted in breeding programs and thus represents an untapped resource for improving plant performance in waterlogged soils. To identify the quantitative trait loci (QTL) for ROS tolerance in barley, 187 double haploid (DH) lines from a cross between TX9425 and Naso Nijo were screened for superoxide anion (O2•-) and hydrogen peroxide (H2O2)-two major ROS species accumulated under hypoxia stress. We show that quantifying ROS content after 48 h hypoxia could be a fast and reliable approach for the selection of waterlogging tolerant barley genotypes. The same QTL on chromosome 2H was identified for both O2•- (QSO.TxNn.2H) and H2O2 (QHP.TxNn.2H) contents. This QTL was located at the same position as the QTL for the overall waterlogging and salt tolerance reported in previous studies, explaining 23% and 24% of the phenotypic variation for O2•- and H2O2 contents, respectively. The analysis showed a causal association between ROS production and both waterlogging and salt stress tolerance. Waterlogging and salinity are two major abiotic factors affecting crop production around the globe and frequently occur together. The markers associated with this QTL could potentially be used in future breeding programs to improve waterlogging and salinity tolerance.


Assuntos
Hordeum/genética , Hordeum/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Locos de Características Quantitativas , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico , Mapeamento Cromossômico , Peróxido de Hidrogênio/metabolismo
9.
Plant Signal Behav ; 13(9): e1514895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30188770

RESUMO

Functions of exogenous L-ascorbic acid in plant roots are poorly understood. Recent study by Makavitskaya et al. (doi.org/10.1093/jxb/ery056) has demonstrated that exogenous ascorbate can be released from roots in response to salt stress, and can trigger elevation in the cytosolic free Ca2+. Here, we report that exogenous ascorbate significantly modifies root elongation in Arabidopsis thaliana. Using a medium exchange technique, we have shown that 10-100 µM ascorbate induces small but significant increase in root elongation while higher levels cause its dramatic decrease. Root border cells of Pisum sativum have been losing viability twice faster in the presence of ascorbate that under control conditions, as tested by the confocal microscopy and a combined staining with propidium iodide and fluorescein diacetate.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Ácido Ascórbico/farmacologia , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
New Phytol ; 220(1): 49-69, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29916203

RESUMO

Contents Summary 49 I. Introduction 49 II. Physiological and structural characteristics of plant Ca2+ -permeable ion channels 50 III. Ca2+ extrusion systems 61 IV. Concluding remarks 64 Acknowledgements 64 References 64 SUMMARY: Calcium is an essential structural, metabolic and signalling element. The physiological functions of Ca2+ are enabled by its orchestrated transport across cell membranes, mediated by Ca2+ -permeable ion channels, Ca2+ -ATPases and Ca2+ /H+ exchangers. Bioinformatics analysis has not determined any Ca2+ -selective filters in plant ion channels, but electrophysiological tests do reveal Ca2+ conductances in plant membranes. The biophysical characteristics of plant Ca2+ conductances have been studied in detail and were recently complemented by molecular genetic approaches. Plant Ca2+ conductances are mediated by several families of ion channels, including cyclic nucleotide-gated channels (CNGCs), ionotropic glutamate receptors, two-pore channel 1 (TPC1), annexins and several types of mechanosensitive channels. Key Ca2+ -mediated reactions (e.g. sensing of temperature, gravity, touch and hormones, and cell elongation and guard cell closure) have now been associated with the activities of specific subunits from these families. Structural studies have demonstrated a unique selectivity filter in TPC1, which is passable for hydrated divalent cations. The hypothesis of a ROS-Ca2+ hub is discussed, linking Ca2+ transport to ROS generation. CNGC inactivation by cytosolic Ca2+ , leading to the termination of Ca2+ signals, is now mechanistically explained. The structure-function relationships of Ca2+ -ATPases and Ca2+ /H+ exchangers, and their regulation and physiological roles are analysed.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Permeabilidade da Membrana Celular , Transporte de Íons
11.
Int J Mol Sci ; 19(4)2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690632

RESUMO

Ion channels activated by reactive oxygen species (ROS) have been found in the plasma membrane of charophyte Nitella flixilis, dicotyledon Arabidopsis thaliana, Pyrus pyrifolia and Pisum sativum, and the monocotyledon Lilium longiflorum. Their activities have been reported in charophyte giant internodes, root trichoblasts and atrichoblasts, pollen tubes, and guard cells. Hydrogen peroxide and hydroxyl radicals are major activating species for these channels. Plant ROS-activated ion channels include inwardly-rectifying, outwardly-rectifying, and voltage-independent groups. The inwardly-rectifying ROS-activated ion channels mediate Ca2+-influx for growth and development in roots and pollen tubes. The outwardly-rectifying group facilitates K⁺ efflux for the regulation of osmotic pressure in guard cells, induction of programmed cell death, and autophagy in roots. The voltage-independent group mediates both Ca2+ influx and K⁺ efflux. Most studies suggest that ROS-activated channels are non-selective cation channels. Single-channel studies revealed activation of 14.5-pS Ca2+ influx and 16-pS K⁺ efflux unitary conductances in response to ROS. The molecular nature of ROS-activated Ca2+ influx channels remains poorly understood, although annexins and cyclic nucleotide-gated channels have been proposed for this role. The ROS-activated K⁺ channels have recently been identified as products of Stellar K⁺ Outward Rectifier (SKOR) and Guard cell Outwardly Rectifying K⁺ channel (GORK) genes.


Assuntos
Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Humanos , Radical Hidroxila/metabolismo , Potássio/metabolismo
12.
Funct Plant Biol ; 45(2): 1-8, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32291017

RESUMO

Plant signalling is a set of phenomena that serves the transduction of external and internal signals into physiological responses such as modification of enzyme activity, cytoskeleton structure or gene expression. It operates at the level of cell compartments, whole cells, tissues, organs or even plant communities. To achieve this, plants have evolved a network of signalling proteins including plasma membrane receptors and ion transporters, cascades of kinases and other enzymes as well as several second messengers such as cytosolic calcium (Ca2+), reactive oxygen/nitrogen species (ROS/RNS), cyclic nucleotides (cAMP and cGMP) and others. Overall, these systems recognise and decode environmental signals and co-ordinate ontogeny programs. This paper summarises recent progress in the field of plant signalling, which was a major theme of the 4th International Symposium on Plant Signalling and Behaviour, 2016, in Saint Petersburg, Russia. Several novel hypotheses and concepts were proposed during this meeting. First, the concept of ROS-Ca2+ hubs has found further evidence and acceptance. This concept is based on reciprocal activation of NADPH oxidases by cytosolic Ca2+ on the one hand, and Ca2+-permeable channels that are activated by NADPH-produced ROS. ROS-Ca2+ hubs enhance the intensity and duration of originally weak Ca2+ and ROS signals. Hubs are directly involved in ROS- and Ca2+-mediated physiological reactions, such as stress response, growth, programmed cell death, autophagy and long-distance signalling. Second, recent findings have widened the list of cyclic nucleotide-regulated processes and strengthened the biochemical basis of cyclic nucleotide biochemistry by exploring cyclase activities of new receptors such as the Phytosulfokine Receptor 1, the pathogen peptide 1 receptor (atPepR1), the brassinosteroid BRI1 receptor and the cell wall-associated kinase like 10. cGMP and cAMP signalling has demonstrated strong link to Ca2+ signalling, via cyclic nucleotide-gated Ca2+-permeable ion channels (CNGCs), and to ROS and RNS via their nitrosylated forms. Third, a novel role for cytosolic K+ as a regulator of plant autophagy and programmed cell death has emerged. The cell death-associated proteases and endonucleases were demonstrated to be activated by a decrease of cytosolic K+ via ROS-induced stimulation of the plasma membrane K+ efflux channel GORK. Importantly, the origin of ROS for induction of autophagy and cell death varies in different tissues and comprises several pools, including NADPH oxidases, peroxidases, photosynthetic and respiratory electron-transporting chains and peroxisomal enzymes. The peroxisome pool is the 'latest' addition to established cellular ROS-producing machineries and is dependent on the state and abundance of catalase in this compartment. Finally, new aspects of phytohormone signalling, such as regulation of root hydraulic pressure by abscisic acid and rate of mitosis by cytokinins, as well as localising cytokinin receptors in endoplasmic reticulum, are reported. Other observations suggest that melatonin is a hormone-like substance in plants, because it targets Ca2+, ROS and RNS.

13.
Funct Plant Biol ; 45(2): 9-27, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32291018

RESUMO

Elevation in the cytosolic free calcium is crucial for plant growth, development and adaptation. Calcium influx into plant cells is mediated by Ca2+ depolarisation-activated, hyperpolarisation-activated and voltage-independent Ca2+-permeable channels (DACCs, HACCs and VICCs respectively). These channels are encoded by the following gene families: (1) cyclic nucleotide-gated channels (CNGCs), (2) ionotropic glutamate receptors (GLRs), (3) annexins, (4) 'mechanosensitive channels of small (MscS) conductance'-like channels (MSLs), (5) 'mid1-complementing activity' channels (MCAs), Piezo channels, and hyperosmolality-induced [Ca2+]cyt. channel 1 (OSCA1). Also, a 'tandem-pore channel1' (TPC1) catalyses Ca2+ efflux from the vacuole in response to the plasma membrane-mediated Ca2+ elevation. Recent experimental data demonstrated that Arabidopsis thaliana (L.) Heynh. CNGCs 2, 5-10, 14, 16 and 18, GLRs 1.2, 3.3, 3.4, 3.6 and 3.7, TPC1, ANNEXIN1, MSL9 and MSL10,MCA1 and MCA2, OSCA1, and some their homologues counterparts in other species, are responsible for Ca2+ currents and/or cytosolic Ca2+ elevation. Extrusion of Ca2+ from the cytosol is mediated by Ca2+-ATPases and Ca2+/H+ exchangers which were recently examined at the level of high resolution crystal structure. Calcium-activated NADPH oxidases and reactive oxygen species (ROS)-activated Ca2+ conductances form a self-amplifying 'ROS-Ca2+hub', enhancing and transducing Ca2+ and redox signals. The ROS-Ca2+ hub contributes to physiological reactions controlled by ROS and Ca2+, demonstrating synergism and unity of Ca2+ and ROS signalling mechanisms.

14.
Funct Plant Biol ; 45(2): 28-46, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32291019

RESUMO

Environmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots. Based on our own data and that in the literature, we propose a hypothesis on the induction of autophagy and PCD in roots by loss of cytosolic K+. To support this, we present data showing that in conditions of salt stress-induced autophagy, gork1-1 plants lacking root K+ efflux channel have fewer autophagosomes compared with the wild type. Overall, literature analyses and presented data strongly suggest that stress-induced root autophagy and PCD are controlled by the level of cytosolic potassium and ROS.

15.
Funct Plant Biol ; 45(2): 247-258, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32291039

RESUMO

In plant cells, peroxisomes participate in the metabolism of reactive oxygen species (ROS). One of the major regulators of cellular ROS levels - catalase (CAT) - occurs exclusively in peroxisomes. CAT activity is required for immunity-triggered autophagic programmed cell death (PCD). Autophagy has been recently demonstrated to represent a route for degradation of peroxisomes in plant cells. In the present study, the dynamics of the cellular peroxisome pool in tobacco BY-2 cell suspension cultures were used to analyse the effects of inhibition of basal autophagy with special attention to CAT activity. Numbers of peroxisomes per cell, levels of CAT protein and activity, cell viability, ROS levels and expression levels of genes encoding components of antioxidant system were analysed upon application of 3-methyladenine (3-MA), an inhibitor of autophagy, and/or aminotriazole (AT), an inhibitor of CAT. When applied separately, 3-MA and AT led to an increase in cell death, but this effect was attenuated by their simultaneous application. The obtained data suggest that both the levels of CAT protein in peroxisomes as well as CAT activity modulate the onset of cell death in tobacco BY-2 cells via ROS levels and autophagy.

16.
Plant J ; 85(2): 245-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26676841

RESUMO

Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L(-1) , inhibited Arabidopsis thaliana root elongation and leaf expansion. This also resulted in decreased photosynthetic efficiency and the extreme accumulation of Ag in tissues. Acute application of Ag NPs induced a transient elevation of [Ca(2+) ]cyt and the accumulation of reactive oxygen species (ROS; partially generated by NADPH oxidase). Whole-cell patch-clamp measurements on root cell protoplasts demonstrated that Ag NPs slightly inhibited plasma membrane K(+) efflux and Ca(2+) influx currents, or caused membrane breakdown; however, in excised outside-out patches, Ag NPs activated Gd(3+) -sensitive Ca(2+) influx channels with unitary conductance of approximately 56 pS. Bulk particles did not modify the plasma membrane currents. Tests with electron paramagnetic resonance spectroscopy showed that Ag NPs were not able to catalyse hydroxyl radical generation, but that they directly oxidized the major plant antioxidant, l-ascorbic acid. Overall, the data presented shed light on mechanisms of the impact of nanosilver on plant cells, and show that these include the induction of classical stress signalling reactions (mediated by [Ca(2+) ]cyt and ROS) and a specific effect on the plasma membrane conductance and the reduced ascorbate.


Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nanopartículas Metálicas/química , Prata/química , Ácido Ascórbico/metabolismo , Cálcio/metabolismo , Canais Iônicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Steroids ; 102: 53-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26210210

RESUMO

Three BS-BODIPY (brassinosteroids-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) conjugates were synthesized and their fluorescent and immunological properties were investigated. Two of the conjugates, having present all the functional groups characteristic of BS, were shown to be potentially useful as biological probes to study involvement of BS into physiological processes in living cells.


Assuntos
Compostos de Boro/química , Brassinosteroides/química
18.
Steroids ; 97: 98-106, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25449770

RESUMO

Brassinosteroids (BRs) are an important class of plant hormones with a multitude of functions. They have been intensively investigated for their biosynthesis, distribution and physiological functions. The aim of this study was to examine possible effects of BRs on the plant plasma membrane cation conductances and Ca(2+) signalling. The wheat root protoplasts (tested by patch-clamping) and excised arabidopsis roots (analysed by Ca(2+)-aequorin chemiluminometry), were used. In the whole-cell plasma membrane patches, 24-epibrassinolide, 28-homobrassionolide or 24-epicastasterone (1 µM) were applied exogenously. 24-Epicastasterone increased the activity of the K(+) efflux conductance in 50% of tested protoplasts while 24-epibrassonolide and 28-homobrassionolide did not modify the plasma membrane currents. Addition of 24-epicastasterone at the cytosolic side (to the pipette solution) resulted in dramatic stimulation of a time-dependent K(+) efflux current (in 30% of protoplasts) and an activation of Ca(2+) influx currents (in 30% of protoplasts). Gadolinium ions, which are blockers of cation channels, inhibited the 24-epicastasterone-induced cation channel activities. In Arabidopsis thaliana plants constitutively expressing aequorin, exogenous 24-epibrassonolide, 28-homobrassionolide and 24-epicastasterone induced a transient elevation of the cytosolic free Ca(2+), which was inhibited by Gd(3+) and mediated by Ca(2+) influx from the bathing solution. In Ca(2+)-aequorin tests, 10 µM of exogenous BRs was the minimal concentration at which statistically significant changes of the cytosolic Ca(2+) were observed. In conclusion, the obtained results suggest that the plasma membrane of root cells contains the brassinosteroid-activated cation-permeable channels, which can probably be involved in rapid regulation of the K(+) homeostasis and Ca(2+) signalling.


Assuntos
Brassinosteroides/metabolismo , Canais de Cálcio/metabolismo , Canais de Potássio/metabolismo , Transdução de Sinais , Triticum/metabolismo
19.
J Plant Physiol ; 171(9): 696-707, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24685330

RESUMO

Potassium is the most abundant macronutrient, which is involved in a multitude of physiological processes. Potassium uptake in roots is crucial for plants; however, K(+) efflux can also occur and has important functions. Potassium efflux from roots is mainly induced by stresses, such as pathogens, salinity, freezing, oxidants and heavy metals. Reactive oxygen species (ROS) and exogenous purines also cause this reaction. The depolarisation and activation of cation channels are required for K(+) efflux from plant roots. Potassium channels and nonselective cation channels (NSCCs) are involved in this process. Some of them are 'constitutive', while the others require a chemical agent for activation. In Arabidopsis, there are 77 genes that can potentially encode K(+)-permeable channels. Potassium-selective channel genes include 9 Shaker and 6 Tandem-Pore K(+) channels. Genes of NSCCs are more abundant and present by 20 cyclic nucleotide gated channels, 20 ionotropic glutamate receptors, 1 two-pore channel, 10 mechanosensitive-like channels, 2 mechanosensitive 'Mid1-Complementing Activity' channels, 1 mechanosensitive Piezo channel, and 8 annexins. Two Shakers (SKOR and GORK) and several NSCCs are expressed in root cell plasma membranes. SKOR mediates K(+) efflux from xylem parenchyma cells to xylem vessels while GORK is expressed in the epidermis and functions in K(+) release. Both these channels are activated by ROS. The GORK channel activity is stimulated by hydroxyl radicals that are generated in a Ca(2+)-dependent manner in stress conditions, such as salinity or pathogen attack, resulting in dramatic K(+) efflux from root cells. Potassium loss simulates cytosolic proteases and endonucleases, leading to programmed cell death. Other physiological functions of K(+) efflux channels include repolarisation of the plasma membrane during action potentials and the 'hypothetical' function of a metabolic switch, which provides inhibition of energy-consuming biosyntheses and releasing energy for defence and reparation needs.


Assuntos
Raízes de Plantas/metabolismo , Plantas/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico
20.
J Exp Bot ; 65(5): 1259-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24520019

RESUMO

Electrolyte leakage accompanies plant response to stresses, such as salinity, pathogen attack, drought, heavy metals, hyperthermia, and hypothermia; however, the mechanism and physiological role of this phenomenon have only recently been clarified. Accumulating evidence shows that electrolyte leakage is mainly related to K(+) efflux from plant cells, which is mediated by plasma membrane cation conductances. Recent studies have demonstrated that these conductances include components with different kinetics of activation and cation selectivity. Most probably they are encoded by GORK, SKOR, and annexin genes. Hypothetically, cyclic nucleotide-gated channels and ionotropic glutamate receptors can also be involved. The stress-induced electrolyte leakage is usually accompanied by accumulation of reactive oxygen species (ROS) and often results in programmed cell death (PCD). Recent data strongly suggest that these reactions are linked to each other. ROS have been shown to activate GORK, SKOR, and annexins. ROS-activated K(+) efflux through GORK channels results in dramatic K(+) loss from plant cells, which stimulates proteases and endonucleases, and promotes PCD. This mechanism is likely to trigger plant PCD under severe stress. However, in moderate stress conditions, K(+) efflux could play an essential role as a 'metabolic switch' in anabolic reactions, stimulating catabolic processes and saving 'metabolic' energy for adaptation and repair needs.


Assuntos
Apoptose , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Canais de Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Equilíbrio Hidroeletrolítico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Potássio/metabolismo , Canais de Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...