Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Protein J ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097848

RESUMO

Polyphenol oxidase (PPO) is an industrially important enzyme associated with browning reactions. In the present study, a set of ten new dihydropyridine [2,3-d] pyrimidines (TD-Hid-1-10) were synthesized and was found to be proven characteristically by 1H NMR, 13C NMR, IR, elemental analysis, and assessed as possible PPO inhibitors. PPO was purified from banana using three-phase partitioning, achieving an 18.65-fold purification and 136.47% activity recovery. Enzyme kinetics revealed that the compounds TD-Hid-6 and TD-Hid-7 are to be the most potent inhibitors, exhibiting mixed-type inhibition profile with IC50 values of 1.14 µM, 5.29 µM respectively against purified PPO enzyme. Electronic structure calculations at the B3LYP/PBE0 level of theories using def-2 SVP, def2-TZVP basis sets with various molecular descriptors characterized the electronic behavior of studied derivatives TD-Hid-1-10. Molecular electrostatic potential (MEP) and reduced density gradient analyses of RDG-NCI provided insights into charge distributions and weak intermolecular interactions. Docking study simulations predicted binding poses within crucial amino acid sequence in the 2y9x enzyme's active site, which is typically similar in sequence to the PPO form is not allowed. Ligands were analysed in terms of binding energies, inhibitor concentrations (mM) and various molecular interactions such as H-bonds, H-carbon, π-carbon, π-sigma, π-sigma, π-π T-shaped, π-π stacked, π-alkyl, Van der Waals and Cu interactions. The lowest binding energy (-7.83 kcal/mol) and the highest inhibitory effect (1.83 mM) were shown by the ligand Td-Hid-6, which forms H-bonds with Met280 and Asn260, exhibits π-sigma interactions with His61 and π-alkyl interactions with Val283. Other ligands also showed different interactions with various amino acids; for example, the Td-Hid-1 ligand formed H-bonds with His244 and showed π-sigma interactions with His244 and Val283.

2.
Int J Biol Macromol ; 274(Pt 2): 133184, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925176

RESUMO

Pyruvate kinase (PK) activators have potential therapeutic applications in diseases such as sickle cell anemia. In this study, N-Substituted sulfonamide derivatives of 1,4-dihydropyridines were synthesized and evaluated as PK activators in vitro and using molecular docking studies. The compounds were synthesized by reacting dicarbonyl compounds with ammonium acetate, 5-nitrobenzaldehyde, and alumina sulfuric acid (ASA), followed by reduction and sulfonylation. The structures of the compounds were analyzed using spectroscopic techniques. DFT calculations provided insights into the electronic properties. Molecular docking of the compounds into the active site of PK showed favorable binding interactions. ADME evaluation indicated suitable solubility, BBB permeation, and lack of CYP450 inhibition. Overall, this study demonstrates the potential of new hybrid 1,4-dihydropyridine substituted sulfonamides as PK activators for further development. According to AC50 values, the compound (DTSF7, 0.97µM) is about 100-fold higher affective than the clinically used sulfonamide compound (AC50 = 90µM) for PK.


Assuntos
Simulação de Acoplamento Molecular , Piruvato Quinase , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Animais , Coelhos , Piruvato Quinase/metabolismo , Piruvato Quinase/química , Músculos/efeitos dos fármacos , Músculos/enzimologia , Músculos/metabolismo , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/química , Ativadores de Enzimas/síntese química , Domínio Catalítico , Relação Estrutura-Atividade
3.
Int J Biol Macromol ; 267(Pt 1): 131489, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608980

RESUMO

This paper describes the in vitro inhibition potential of bisoxadiazole-substituted sulfonamide derivatives (6a-t) against bovine carbonic anhydrase (bCA) after they were designed through computational analyses and evaluated the predicted interaction via molecular docking. First, in silico ADMET predictions and physicochemical property analysis of the compounds provided insights into solubility and permeability, then density functional theory (DFT) calculations were performed to analyse their ionization energies, nucleophilicity, in vitro electron affinity, dipole moments and molecular interactions under vacuum and dimethyl sulfoxide (DMSO) conditions. After calculating the theoretical inhibition constants, IC50 values determined from enzymatic inhibition were found between 12.93 and 45.77 µM. Molecular docking evaluation revealed favorable hydrogen bonding and π-interactions of the compounds within the bCA active site. The experimentally most active compound, 6p, exhibited the strongest inhibitory activity with a theoretical inhibition constant value of 9.41 nM and H-bonds with Gln91, Thr198, and Trp4 residues and His63 Pi-cation interactions with His63 residues. Overall, the study reveals promising bCA blocking potential for the synthesized derivatives, similar to acetazolamide.


Assuntos
Inibidores da Anidrase Carbônica , Simulação de Acoplamento Molecular , Oxidiazóis , Sulfonamidas , Bovinos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Animais , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Oxidiazóis/química , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Ligação de Hidrogênio , Relação Estrutura-Atividade , Domínio Catalítico
4.
Luminescence ; 39(4): e4722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532615

RESUMO

In this study, CuLaSe2 and ZnCuLaSe2 quantum dots (QDs) with a mean size of ~4 nm were synthesized and characterized, and their temperature-dependent photoluminescence (PL) properties were studied in the temperature range from 90 to 300 K for the first time. The results show that the obtained QDs were spherical and revealed excitonic band gaps. The PL intensity for both types of materials decreased when increasing the temperature to 300 K, which was attributed to the nonradiative relaxation and thermal escape mechanisms. As the temperature was increased, the PL linewidths broadened, and PL peak energies were red shifted for both types of QDs due to the exciton-phonon coupling and lattice deformation potential mechanisms. In addition, we found that as the temperature was decreased, the PL spectrum of ZnCuLaSe2 QDs contained two extra components, which could be attributed to the shallow defect sites (low energy peak) and the crystal phase transition process (high energy peak). The spectrum of CuLaSe2 QDs contained one extra component, which could be attributed to the crystal phase transition process.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Temperatura , Zinco/química
5.
3 Biotech ; 13(9): 296, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37564274

RESUMO

The effect and contribution of an external magnetic field (MF) on the uptake and translocation of nanoparticles (NPs) in plants have been investigated in this study. Barley was treated with iron oxide NPs (Fe3O4, 500 mg/L, 50-100 nm) and grown under various MF strengths (20, 42, 125, and 250 mT). The root-to-shoot translocation of NPs was assessed using a vibrating sample magnetometer (VSM) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additionally, plant phenological parameters, such as germination, protein and chlorophyll content, and photosynthetic and nutritional status, were examined. The results demonstrated that the external MF significantly enhances the uptake of NPs through the roots. The uptake was higher at lower MF strengths (20 and 42 mT) than at higher MF strengths (125 and 250 mT). The root and shoot iron (Fe) contents were approximately 2.5-3-fold higher in the 250 mT application compared to the control. Furthermore, the MF treatments significantly increased micro-elements such as Mn, Zn, Cu, Mo, and B (P < 0.005). This effect could be attributed to the disruption of cell membranes at the root tip cells caused by both the MF and NPs. Moreover, the MF treatments improved germination rates by 28%, total protein content, and photosynthetic parameters. These findings show that magnetic field application helps the effective transport of magnetic NPs, which could be essential for NPs-mediated drug delivery, plant nutrition, and genetic transformation applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03727-4.

6.
J Enzyme Inhib Med Chem ; 29(1): 132-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23356427

RESUMO

Abstract 1,3-Dicarbonyl derivatives of methylaminobenzene-sulfonamide were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase (hCA) I and hCA II were evaluated. hCA I and hCA II from human erythrocytes were purified by a simple one-step procedure by using Sepharose 4B-L-tyrosine-sulfanilamide affinity column. Our results show that the synthesized compounds inhibited the activity of carbonic anhydrase (CA) I and CA II. Among them, 2b and 2e were found to be the most active (IC50=2.12 and 2.52 µM) for hCA I and hCA II, respectively.


Assuntos
Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Cromatografia de Afinidade , Eritrócitos/enzimologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...