RESUMO
Background: High BMI (Body Mass Index) is a significant factor impacting health, with a clear link to an increased risk of leukemia. Research on this topic is limited. Understanding the epidemiological trends of leukemia attributable to high BMI risk is crucial for disease prevention and patient support. Methods: We obtained the data from the Global Burden of Disease Study, analyzing the ASR (age-standardized rates), including ASDR (age-standardized death rate) and age-standardized disability-adjusted life years (DALYs) rate, and estimated annual percentage change (EAPC) by gender, age, country, and region from 1990 to 2019. Results: In 2019, deaths and DALYs have significantly increased to 21.73 thousand and 584.09 thousand. The global age-standardized death and DALYs rates have slightly increased over the past 30 years (EAPCs: 0.34 and 0.29). Among four common leukemia subtypes, only CML (Chronic Myeloid Leukemia) exhibited a significant decrease in ASDR and age-standardized DALYs rate, with EAPC of -1.74 and -1.52. AML (Acute Myeloid Leukemia) showed the most pronounced upward trend in ASDR, with an EAPC of 1.34. These trends vary by gender, age, region, and national economic status. Older people have been at a significantly greater risk. Females globally have borne a higher burden. While males have shown an increasing trend. The regions experiencing the greatest growth in ASR were South Asia. The countries with the largest increases were Equatorial Guinea. However, It is worth noting that there may be variations among specific subtypes of leukemia. Regions with high Socio-demographic Index (SDI) have had the highest ASR, while low-middle SDI regions have shown the greatest increase in these rates. All ASRs values have been positively correlated with SDI, but there has been a turning point in medium to high SDI regions. Conclusions: Leukemia attributable to high BMI risk is gradually becoming a heavier burden globally. Different subtypes of leukemia have distinct temporal and regional patterns. This study's findings will provide information for analyzing the worldwide disease burden patterns and serve as a basis for disease prevention, developing suitable strategies for the modifiable risk factor.
RESUMO
BACKGROUND: Elevated evidence suggests that the SENPs family plays an important role in tumor progression. However, the role of SENPs in AML remains unclear. METHODS: We evaluated the expression pattern of SENP1 based on RNA sequencing data obtained from OHSU, TCGA, TARGET, and MILE datasets. Clinical samples were used to verify the expression of SENP1 in the AML cells. Lentiviral vectors shRNA and sgRNA were used to intervene in SENP1 expression in AML cells, and the effects of SENP1 on AML proliferation and anti-apoptosis were detected using in vitro and in vivo models. Chip-qPCR, MERIP-qPCR, CO-IP, RNA pulldown, and dual-luciferase reporter gene assays were used to explore the regulatory mechanisms of SNEP1 in AML. RESULTS: SENP1 was significantly upregulated in high-risk AML patients and closely related to poor prognosis. The AKT/mTOR signaling pathway is a key downstream pathway that mediates SENP1's regulation of AML proliferation and anti-apoptosis. Mechanistically, the CO-IP assay revealed binding between SENP1 and HDAC2. SUMO and Chip-qPCR assays suggested that SENP1 can desumoylate HDAC2, which enhances EGFR transcription and activates the AKT pathway. In addition, we found that IGF2BP3 expression was upregulated in high-risk AML patients and was positively correlated with SENP1 expression. MERIP-qPCR and RIP-qPCR showed that IGF2BP3 binds SENP1 3-UTR in an m6A manner, enhances SENP1 expression, and promotes AKT pathway conduction. CONCLUSIONS: Our findings reveal a distinct mechanism of SENP1-mediated HDAC2-AKT activation and establish the critical role of the IGF2BP3/SENP1signaling axis in AML development.
Assuntos
Adenosina , Proliferação de Células , Cisteína Endopeptidases , Histona Desacetilase 2 , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Proteínas de Ligação a RNA , Sumoilação , Animais , Feminino , Humanos , Masculino , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Apoptose , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Progressão da Doença , Regulação Leucêmica da Expressão Gênica , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Chronic myeloid leukemia (CML) is a common hematological malignancy, and tyrosine kinase inhibitors (TKIs) represent the primary therapeutic approach for CML. Activation of metabolism signaling pathway has been connected with BCR::ABL1-independent TKIs resistance in CML cells. However, the specific mechanism by which metabolism signaling mediates this drug resistance remains unclear. Here, we identified one relationship between glutamine synthetase (GS) and BCR::ABL1-independent Imatinib resistance in CML cells. METHODS: GS and PXN-AS1 in bone marrow samples of CML patients with Imatinib resistance (IR) were screened and detected by whole transcriptome sequencing. GS expression was upregulated using LVs and blocked using shRNAs respectively, then GS expression, Gln content, and cell cycle progression were respectively tested. The CML IR mice model were established by tail vein injection, prognosis of CML IR mice model were evaluated by Kaplan-Meier analysis, the ratio of spleen/body weight, HE staining, and IHC. PXN-AS1 level was blocked using shRNAs, and the effects of PXN-AS1 on CML IR cells in vitro and in vivo were tested the same as GS. Several RNA-RNA tools were used to predict the potential target microRNAs binding to both GS and PXN-AS1. RNA mimics and RNA inhibitors were used to explore the mechanism through which PXN-AS1 regulates miR-635 or miR-635 regulates GS. RESULTS: GS was highly expressed in the bone marrow samples of CML patients with Imatinib resistance. In addition, the lncRNA PXN-AS1 was found to mediate GS expression and disorder cell cycle in CML IR cells via mTOR signaling pathway. PXN-AS1 regulated GS expression by binding to miR-635. Additionally, knockdown of PXN-AS1 attenuated BCR::ABL1-independent Imatinib resistance in CML cells via PXN-AS1/miR-635/GS/Gln/mTOR signaling pathway. CONCLUSIONS: Thus, PXN-AS1 promotes GS-mediated BCR::ABL1-independent Imatinib resistance in CML cells via cell cycle signaling pathway.
RESUMO
BACKGROUND: To assess the prevalence trend and contributing factors of heart failure (HF) impairment with thalassemias at global, regional and national levels. METHODS: Data on HF impairment with thalassemias was collected from the Global Burden of Disease study. The absolute number and prevalence of the disease were systematically collected for each year, and the estimated annual percentage changes (EAPC) in HF impairment were calculated by gender, region and country to measure temporal trends. RESULTS: Thalassemias have caused a significant global burden since 1990, and the case number of HF related to thalassemias has been steadily increasing. The highest case number of HF impairments with thalassemias is observed in China (7739 cases) and the highest prevalence is in Pakistan (1.61 per 100,000) currently. Besides, the middle sociodemographic index (SDI) region carries the highest burden of comorbid disease yet exhibits the most evident trend for improvement across the five regions (EAPC = -.98). The burden of thalassemias and comorbid HF is generally higher in males than females with the gender gap growing chasm in the future. Besides, the hotspots of HF impairment with thalassemias have gradually shifted to low SDI regions, though middle SDI regions still hold a relatively higher prevalence (.37 per 100,000) across different regions. CONCLUSIONS: The burden of thalassemias and accompanying HF, as well as their temporal trends, vary greatly across countries and regions. These findings can improve understanding of these conditions and guide policymakers in developing appropriate policies to address disparities between countries.
Assuntos
Insuficiência Cardíaca , Talassemia , Feminino , Masculino , Humanos , Prevalência , Insuficiência Cardíaca/epidemiologia , China/epidemiologia , Saúde Global , IncidênciaRESUMO
Inherited anemia continues to pose a significant public health concern on a global scale, owing to its extensive geographical prevalence, substantial patient population, and profound ramifications. Here, we investigated detailed information on inherited anemias (including thalassemias, thalassemias trait, sickle cell disease, sickle cell trait, G6PD deficiency, and G6PD trait) for the period 1990-2019 from the Global Burden of Disease study. Over the course of three decades, there has been a persistent rise in the incidence of inherited anemias worldwide, culminating in a total of 44,896,026 incident cases in 2019. However, the prevalence of inherited anemias has exhibited a consistent downward trend over successive years. Significantly, these inherited anemias primarily impact females, exhibiting a male-to-female ratio of 1:1.88. Among males, the most prevalent inherited anemia is G6PD deficiency, whereas G6PD trait prevails among females. The incidence rates of inherited anemias and their temporal trend exhibited significant variations across different regions, with Central Sub-Saharan Africa displaying the highest incidence rates and Central Latin America experiencing the most substantial decline. The findings of this study suggest a significant correlation between the Socio-Demographic index (SDI) and incidence rates of inherited anemias, particularly in regions with lower SDI levels such as Africa and South Asia. These results contribute valuable insights for the analysis of global trends in the burden of inherited anemias.
RESUMO
Acute myeloid leukemia (AML) is a common heterogeneous malignancy. Novel molecular markers aid diagnosis, patient sub-categorization, and optimal clinical decisions. Here, we explored the prognostic implications associated with the expression of the programmed cell death (PDCD) family of molecules in AML patients. Based on the findings from the TCGA and OHSU cohorts, we observed that the mRNA abundance of PDCD4 is significantly higher compared to other molecules within the PDCD family. Furthermore, high expression of PDCD4 was associated with predicted long-term patient survival in diagnosed AML patients. In the chemotherapy group, patients with high PDCD4 expression showed a tendency toward longer overall survival (OS) (P = 0.0266) and event-free survival (EFS) (P = 0.0008). High PDCD4 levels served as a favorable independent predictor for both OS and EFS in AML patients. However, subgroup analyses in the hematopoietic stem cell transplantation (HSCT) group revealed no significant difference in OS or EFS between individuals with high and low PDCD4 expression. Furthermore, in the low PDCD4 expression group, AML patients who underwent HSCT experienced improved survival outcomes (P = 0.0015), helping to mitigate the unfavorable prognosis associated with PDCD4 downregulation. Conversely, in the high PDCD4 expression group, HSCT offered a notable short-term survival advantage, while patients with high PDCD4 expression responded favorably to long-term survival through chemotherapy. Biological function enrichment showed that the expression of PDCD4 was correlated with complement and coagulation cascades, cell receptor signaling pathways, and cholesterol metabolism. The findings from this study will aid in better categorizing heterogeneous AML patients and guiding more appropriate clinical decision-making.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Intervalo Livre de Progressão , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/uso terapêuticoRESUMO
Hemophagocytic lymphohistiocytosis (HLH) has a low incidence and high mortality. In order to improve our understanding of the clinical features and prognostic risk factors of adult HLH, we analyzed the clinical characteristics and prognostic risk factors of adult HLH and developed a prognostic model to predict the overall survival (OS) of adult HLH. The clinical characteristics and survival statistics of adult patients with HLH identified at The Second Affiliated Hospital of Chongqing Medical University between February 2012 and October 2020 were retrospectively analyzed to constitute the primary cohort, while patients between 25 October 2020 and 20 March 2023 were collected at the same institution as a validation cohort for the prospective study. A total of 142 patients met the inclusion criteria, with 72 and 70 in the primary cohort and validation cohort respectively. In the primary cohort, the median OS was 102 days, with 37.5%, 34.5%, and 28.7% 1-, 2-, and 3-year OS, respectively. Univariate analysis showed that age, interleukin-10 (IL-10), interleukin-2 receptor (IL-2R), prothrombin time (PT), and indirect bilirubin (IBiL) were correlated with prognosis. Multivariate analysis showed that IL-10 and PT were independent factors affecting OS in adult patients with HLH. A prognostic model consisting of IL-2R, PT, and IL-10 and a corresponding prognostic nomogram were developed adopting the principle of minimum value of Akaike information criterion(AIC). The model has a high prediction accuracy letter (C-index = 0.708). The AUC values of 1-year, 2-year, and 3-year were 0.826, 0.865, and 0.882, correspondingly. In the validation cohort, all patients were divided into high-risk and low-risk groups, and the risk of death was significantly higher in the high-risk group than in the low-risk group (p < 0.01). The calibration curve for the model shows that the Nomogram constructed in this study is very reliable to predict the OS of HLH patients. IL-10 and PT have significant prognostic value in adult HLH. The prognostic model and the nomogram built in this study can forecast the OS of adult HLH patients.
Assuntos
Linfo-Histiocitose Hemofagocítica , Humanos , Adulto , Linfo-Histiocitose Hemofagocítica/etiologia , Prognóstico , Estudos Retrospectivos , Interleucina-10 , Estudos Prospectivos , Receptores de Interleucina-2RESUMO
BACKGROUND: BK virus-associated hemorrhagic cystitis (BKV-HC) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It can cause morbidity and may increase treatment-related mortality. Previous studies showed that the occurrence of BKV-HC was related to various factors. However, there are still many controversial factors. It is not clear whether BKV-HC will affect the long-term prognosis of patients. OBJECTIVE: We aimed to identify risk factors for BKV-HC after allo-HSCT and evaluate the effect of BKV-HC on overall survival (OS) and progression- free survival (PFS) of patients. STUDY DESIGN: We retrospectively analyzed the clinical data of 93 patients who underwent allo-HSCT. Univariate and multivariate analysis were used to identify risk factors for BKV-HC. The Kaplan-Meier method was used to estimate OS and PFS. A difference was considered statistically significant if P < 0.05. RESULTS: A total of 24 patients developed BKV-HC. The median occurrence time of BKV-HC was 30 (range:8-89) days after transplantation, and the median duration was 25.5 (range:6-50) days. Multivariate logistic regression analysis indicated that peripheral blood lymphocyte count <1 × 109/L before conditioning (OR = 4.705, P = 0.007) and haploidentical transplantation (OR = 13.161, P = 0.018) were independent risk factors for BKV-HC. The 3-year OS rate was 85.9% (95%CI:62.1%-95.2%) in the BKV-HC group and 73.1% (95%CI: 58.2%-88.0%) in the non-BKV-HC group. There was no significant difference between the two groups (P = 0.516). The 3-year PFS rate was 76.3% (95%CI: 57.9%-94.7%) in the BKV-HC group and 58.1% (95%CI: 39.5%-76.7%) in the non-BKV-HC group. There was no significant difference in the two groups (P = 0.459). The severity of BKV-HC was not related to the OS and PFS of the patients (P value was 0.816 and 0.501, respectively). CONCLUSION: Haploidentical transplantation and decreased peripheral blood lymphocyte count before conditioning increased the risk of BKV-HC after allo-HSCT. The occurrence of BKV-HC after allo-HSCT and the severity of which did not affect OS and PFS of the patients.
Assuntos
Vírus BK , Cistite , Transplante de Células-Tronco Hematopoéticas , Humanos , Estudos Retrospectivos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Hemorragia , Fatores de Risco , Condicionamento Pré-Transplante/efeitos adversosRESUMO
BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease characterized by diverse genetic abnormalities. The NPM1 is the most commonly mutated gene in newly diagnosed patients. Optimizing risk stratification in this population could facilitate more rational clinical decision-making. OBJECTIVES: To identify biomarkers that optimize risk stratification in AML patients with NPM1 mutations. MATERIAL AND METHODS: Acute myeloid leukemia patients from multiple centers were included in this study. Univariate, multivariate and Kaplan-Meier survival analyses were used to assess risk factors and clinical outcomes. The gene set enrichment analysis (GSEA) was conducted to identify the related enrichment of biological function. RESULTS: TG-interacting factor 1 (TGIF1) is a good prognostic indicator of disease progression in AML patients. It is closely related to NPM1 mutation, in which age and TGIF1 expression are independent prognostic factors. Multicenter data sources have shown that high expression of TGIF1 is beneficial for AML, regardless of whether patients received bone marrow transplantation. In the NPM1-mutated AML group, age, FLT3-ITD and TGIF1 were independent prognostic factors. Moreover, the NPM1-mutated subgroup could be well dichotomized into 2 groups with distinct prognoses through TGIF1 combined with European LeukemiaNet (ELN) 2017 risk stratification. CONCLUSIONS: The TGIF1 has an important value in the prognosis of AML. The NPM1-mutated patients were further subdivided into risk stratification groups based on TGIF1 expression, which could optimize the ELN 2017 to achieve individualized treatment.
Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Nucleofosmina , Mutação , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Prognóstico , Medição de Risco , Proteínas Repressoras/genética , Proteínas Repressoras/uso terapêutico , Proteínas de Homeodomínio/genéticaRESUMO
N6-methyladenosine (m6A) is the most abundant posttranscriptional modification of mRNA in eukaryotes. Recent evidence suggests that dysregulated m6A-associated proteins and m6A modifications play a pivotal role in the initiation and progression of diseases such as cancer. Here, we identified that IGF2BP3 is specifically overexpressed in acute myeloid leukemia (AML), a subtype of leukemia associated with poor prognosis and high genetic risk. IGF2BP3 is required for maintaining AML cell survival in an m6A-dependent manner, and knockdown of IGF2BP3 dramatically suppresses the apoptosis, reduces the proliferation, and impairs the leukemic capacity of AML cells in vitro and in vivo. Mechanistically, IGF2BP3 interacts with RCC2 mRNA and stabilizes the expression of m6A-modified RNA. Thus, we provided compelling evidence demonstrating that the m6A reader IGF2BP3 contributes to tumorigenesis and poor prognosis in AML and can serve as a target for the development of cancer therapeutics.
Assuntos
Leucemia Mieloide Aguda , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Apoptose/genética , Proteínas Cromossômicas não Histona , Fatores de Troca do Nucleotídeo Guanina , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , RNA , RNA Mensageiro/genéticaRESUMO
ABSTRACT: Poor availability and a lack of affordability of bypassing agents (recombinant activated factor VII and activated prothrombin complex concentrate) in west China prompted us to investigate an alternative cost-effective combination therapy. We aimed to explore the feasibility of therapeutic plasma exchange (TPE)-based combination therapy in the treatment of acquired hemophilia A (AHA).We retrospectively investigated the clinical features of AHA in 6 patients who were treated with a combination of TPE, corticosteroids, and rituximab in our department for 9âyears between January, 2011 and December, 2019.We examined 1 male and 5 female patients. The median age at diagnosis of AHA was 51âyears (18-66âyears). In all patients, FVIII activity levels were low (median: 1.5%; 1-3%), FVIII inhibitor titers were high (median: 24.5âBU/mL; 13.2-48.6âBU/mL), and activated partial thromboplastin time was markedly prolonged (median: 99.4âs; 60.9-110.1âs). They underwent 2 to 8 cycles of plasma exchange and were given varying combinations of dexamethasone, methylprednisolone, prednisone, and rituximab. After TPE bleeding gradually stopped, and activated partial thromboplastin time decreased. After 3âmonths of treatment, FVIII inhibitors completely disappeared.TPE when combined with corticosteroids and rituximab, as adjunctive immunosuppressive agents, may be an effective and reliable treatment for AHA. When there is no alternative, intensive first-line treatment including TPE may be lifesaving.
Assuntos
Hemofilia A/terapia , Troca Plasmática/normas , Adulto , China , Quimioterapia Combinada/normas , Quimioterapia Combinada/estatística & dados numéricos , Estudos de Viabilidade , Feminino , Humanos , Imunossupressores/uso terapêutico , Masculino , Troca Plasmática/métodos , Troca Plasmática/estatística & dados numéricos , Estudos RetrospectivosRESUMO
PURPOSE: Acute myeloid leukaemia (AML) is a common haematological disease in adults. The overall survival (OS) remains unsatisfactory. It is critical to identify potential prognostic biomarkers and develop a nomogram that predicts overall survival in patients with AML. PATIENTS AND METHODS: We used gene expression dataset and clinical data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) to identify differential expression analysis, survival analysis, and prognostic value of IGHD gene family (IGHDs) in AML patients. A risk score model was built through Lasso analysis and multivariate Cox regression. We also developed a nomogram and evaluated its accuracy with Harrell's Harmony Index (C-index) and calibration curve. Last, the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database was used for external validation. RESULTS: IGHD1-20 mRNA expression level was an independent prognostic factor for patients with AML by multivariate analysis. After Lasso analysis and multivariate Cox regression, we constructed a 3-gene model (IGHD1-1, IGHD1-20, IGHD3-16) associated with OS in AML. Risk score and age were validated as independent risk factors for prognosis and were used to build a nomogram. The C index and calibration curve results show that its ability to predict 1-year, 3-year and 5-year overall survival is accurate. CONCLUSION: The mRNA level of IGHDs was increased in AML patients. IGHD1-20 was an independent risk factor for OS in AML patients. The IGHDs risk model (IGHD1-1, IGHD1-20, IGHD3-16) relates to the OS of AML patients. The nomogram, including risk score and age, can conveniently and effectively predict the overall survival rate of patients.
RESUMO
Acute myeloid leukemia (AML) is a clonal malignant proliferative blood disorder with a poor prognosis. Ferroptosis, a novel form of programmed cell death, holds great promise for oncology treatment, and has been demonstrated to interfere with the development of various diseases. A range of genes are involved in regulating ferroptosis and can serve as markers of it. Nevertheless, the prognostic significance of these genes in AML remains poorly understood. Transcriptomic and clinical data for AML patients were acquired from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Univariate Cox analysis was performed to identify ferroptosis-related genes with prognostic value, and the least absolute shrinkage and selection operator (LASSO) algorithm and stepwise multivariate Cox regression analysis were utilized to optimize gene selection from the TCGA cohort (132 samples) for model construction. Tumor samples from the GEO database (136 samples and 104 samples) were used as validation groups to estimate the predictive performance of the risk model. Finally, an eight-gene prognostic signature (including CHAC1, CISD1, DPP4, GPX4, AIFM2, SQLE, PGD, and ACSF2) was identified for the prediction of survival probability and was used to stratify AML patients into high- and low-risk groups. Survival analysis illustrated significantly prolonged overall survival and lower mortality in the low-risk group. The area under the receiver operating characteristic curve demonstrated good results for the training set (1-year: 0.846, 2-years: 0.826, and 3-years: 0.837), which verified the accuracy of the model for predicting patient survival. Independent prognostic analysis indicated that the model could be used as a prognostic factor (p ≤ 0.001). Functional enrichment analyses revealed underlying mechanisms and notable differences in the immune status of the two risk groups. In brief, we conducted and validated a novel ferroptosis-related prognostic model for outcome prediction and risk stratification in AML, with great potential to guide individualized treatment strategies in the future.
RESUMO
BACKGROUND: Alternative splicing (AS), a crucial post-transcriptional regulatory mechanism in expanding the coding capacities of genomes and increasing the diversity of proteins, still faces various challenges in the splicing regulation mechanism of acute myeloid leukemia (AML) and microenvironmental changes. RESULTS: A total of 27,833 AS events were detected in 8337 genes in 178 AML patients, with exon skip being the predominant type. Approximately 11% of the AS events were significantly related to prognosis, and the prediction models based on various events demonstrated high classification efficiencies. Splicing factors correlation networks further altered the diversity of AS events through epigenetic regulation and clarified the potential mechanism of the splicing pathway. Unsupervised cluster analysis revealed significant correlations between AS and immune features, molecular mutations, immune checkpoints and clinical outcome. The results suggested that AS clusters could be used to identify patient subgroups with different survival outcomes in AML, among which C1 was both associated with good outcome in overall survival. Interestingly, C1 was associated with lower immune scores compared with C2 and C3, and favorable-risk cytogenetics was rarely distributed in C2, but much more common in C1. CONCLUSIONS: This study revealed a comprehensive landscape of AS events, and provides new insight into molecular targeted therapy and immunotherapy strategy for AML.
RESUMO
Core binding factor (CBF) is a heterodimer protein complex involved in the transcriptional regulation of normal hematopoietic process. In addition, CBF molecular aberrations represent approximately 20% of all adult Acute Myeloid Leukemia (AML) patients. Treated with standard therapy, adult CBF AML has higher complete remission (CR) rate, longer CR duration, and better prognosis than that of AML patients with normal karyotype or other chromosomal aberrations. Although the prognosis of CBF AML is better than other subtypes of adult AML, it is still a group of heterogeneous diseases, and the prognosis is often different. Recurrence and relapse-related death are the main challenges to be faced following treatment. Mounting research shows the gene heterogeneity of CBF AML. Therefore, to achieve an improved clinical outcome, the differences in clinical and genotypic characteristics should be taken into account in the evaluation and management of such patients, so as to further improve the risk stratification of prognosis and develop targeted therapy. The present article is a comprehensive review of the differences in some common mutant genes between two subtypes of CBF AML.
RESUMO
BACKGROUND: Acute myeloid leukemia (AML) is a common hematological malignancy. Gemtuzumab ozogamicin (GO), a humanized anti-CD33 antibody conjugated with the potent anti-tumor antibiotic calicheamicin, represents a promising targeted therapy for AML. Annexin A5 (ANXA5) is a proposed marker for the clinical prognosis of AML to guide treatment choice. METHODS: In total, 253 patients with pediatric AML were enrolled and divided into two treatment groups: conventional chemotherapy alone and conventional chemotherapy in combination with GO. Univariate, multivariate, and Kaplan-Meier survival analyses were conducted to assess risk factors and clinical outcomes, and to estimate hazard ratios (HRs) and their 95% confidence interval. The level of statistical significance was set at p < 0.05. RESULTS: In the GO treatment group, high ANXA5 expression was considered a favorable prognostic factor for overall survival (OS) and event-free survival (EFS). Multivariate analysis showed that high ANXA5 expression was an independent favorable factor for OS (HR = 0.629, p = 0.084) and EFS (HR = 0.544, p = 0.024) distinct from the curative effect of GO treatment. When all patients were again divided into two groups, this time based on the median expression of ANXA5, patients undergoing chemotherapy combined with GO had significantly better OS (p = 0.0012) and EFS (p = 0.0003) in the ANXA5 high-expression group. Gene set enrichment analysis identified a relevant series of pathways associated with glutathione metabolism, leukocyte transendothelial migration, and hematopoietic cell lineage. CONCLUSION: The expression level of ANXA5 can help optimize the treatment regimen for individual patients, and patients with overexpression of ANXA5 may circumvent poor outcomes from chemotherapy combined with GO.
RESUMO
BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy in pediatrics, and immune-related genes (IRGs) play crucial role in its development. Our study aimed to identify prognostic immune biomarkers of pediatric ALL and construct a risk assessment model. METHODS: Pediatric ALL patients' gene expression data were downloaded from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. We screened differentially expressed IRGs (DEIRGs) between the relapse and non-relapse groups. Cox regression analysis was used to identify optimal prognostic genes, then, a risk model was constructed, and its accuracy was verified in different cohorts. RESULTS: We screened 130 DEIRGs from 251 pediatric ALL samples. The top three pathways that DEIRGs may influence tumor progression are NABA matrisome-associated, chemotaxis, and antimicrobial humoral response. A set of 84 prognostic DEIRGs was identified by using univariate Cox analysis. Then, Lasso regression and multivariate Cox regression analysis screened four optimal genes (PRDX2, S100A10, RORB, and SDC1), which were used to construct the prognostic risk model. The risk score was calculated and the survival analysis results showed that high-risk score was associated with poor overall survival (OS) (p = 3.195 × 10-7 ). The time-dependent survival receiver operating characteristic curves showed good prediction accuracy (Area Under Curves for 3-year, 5-year OS were 0.892 and 0.89, respectively). And the predictive performance of our risk model was successfully verified in testing cohort and entire cohort. CONCLUSIONS: Our prognostic risk model can effectively divide pediatric ALL patients into high-risk and low-risk groups, which may help predict clinical prognosis and optimize individualized treatment.
Assuntos
Biomarcadores Tumorais/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma , Anexina A2/genética , Biomarcadores Tumorais/imunologia , Feminino , Humanos , Lactente , Masculino , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Peroxirredoxinas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas S100/genética , Sindecana-1/genéticaRESUMO
OBJECTIVE: Acute myeloid leukemia (AML) is a malignant clonal disorder. Despite enormous progress in its diagnosis and treatment, the mortality rate of AML remains high. The aim of this study was to identify prognostic biomarkers by using the gene expression profile dataset from public database, and to improve the risk-stratification criteria of survival for patients with AML. MATERIALS AND METHODS: The gene expression data and clinical parameter were acquired from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database. A total of 856 differentially expressed genes (DEGs) were obtained from the childhood AML patients classified into first complete remission (CR1) group (n=791) and not CR group (n=249). We performed a series of bioinformatics analysis to screen key genes and pathways, further comprehending these DEGs through Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. RESULTS: Six genes (SLC17A7, MSX2, CDC26, MSLN, CTSZ and DEFA3) identified by univariate, Kaplan-Meier survival and multivariate Cox regression analyses were used to develop the prognostic model. Further analysis showed that the survival estimations in the high-risk group had an increased risk of death compared with the low-risk group based on the model. The area under the curve of the receiver operator characteristic curve in the prognostic model for predicting the overall survival was 0.729, confirming good prognostic model. We also performed a nomogram to provide an individual patient with the overall probability, and internal validation in the TARGET cohort. CONCLUSION: We identified a six-gene prognostic signature for risk-stratifying in patients with childhood AML. The risk classification model can be used to predict CR markers and may assist clinicians in providing realize the individualized treatment in this patient population.
RESUMO
Acute myeloid leukemia (AML) is a common form of hematological malignancies, the discovery of non-coding RNA (ncRNA) plays an important role in diverse biological processes including hematopoietic differentiation and proliferation. However, the interaction mechanism of key RNAs and their regulatory network in childhood AML are still to be elucidated. RNA profiles were downloaded from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database and identified specific lncRNAs, miRNAs, and mRNAs in high-risk group of childhood AML. A lncRNA-mRNA-miRNA ceRNA network in childhood AML was constructed. A total of 2064 mRNAs, 615 lncRNAs, and 60 miRNAs were identified as significantly differentially expressed, and 13 lncRNAs, 7 miRNAs, and 67 mRNAs were incorporated in the ceRNA network. Functional analysis showed that these DEmRNAs were significantly enriched in Ras signaling pathway, TGF-beta signaling pathway, and other tumor-related pathways. Among the network, 10 RNAs (LINC00471, hsa-mir-100, hsa-mir-150, ANP32E, ERMP1, MYO1B, PAPD7, PTGIS, TERF1, and VEGFA) was associated with high-risk group of childhood AML and functions were significant for prognosis. Then, these findings together provide a new insight into the pathogenesis of high-risk group of childhood AML that can assist clinicians clarify the function of lncRNA to guide the treatment and in-depth study.