Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(5)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38785839

RESUMO

Cell-to-cell distant mechanical communication has been demonstrated using in vitro and in vivo models. However, the molecular mechanisms underlying long-range cell mechanoresponsive interactions remain to be fully elucidated. This study further examined the roles of α-Catenin and Piezo1 in traction force-induced rapid branch assembly of airway smooth muscle (ASM) cells on a Matrigel hydrogel containing type I collagen. Our findings demonstrated that siRNA-mediated downregulation of α-Catenin or Piezo1 expression or chemical inhibition of Piezo1 activity significantly reduced both directional cell movement and branch assembly. Regarding the role of N-cadherin in regulating branch assembly but not directional migration, our results further confirmed that siRNA-mediated downregulation of α-Catenin expression caused a marked reduction in focal adhesion formation, as assessed by focal Paxillin and Integrin α5 localization. These observations imply that mechanosensitive α-Catenin is involved in both cell-cell and cell-matrix adhesions. Additionally, Piezo1 partially localized in focal adhesions, which was inhibited by siRNA-mediated downregulation of α-Catenin expression. This result provides insights into the Piezo1-mediated mechanosensing of traction force on a hydrogel. Collectively, our findings highlight the significance of α-Catenin in the regulation of cell-matrix interactions and provide a possible interpretation of Piezo1-mediated mechanosensing activity at focal adhesions during cell-cell mechanical communication.

2.
Int J Biol Macromol ; 271(Pt 2): 132487, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768910

RESUMO

Due to its biofunctions similar to NO, the CO gas signaling molecule has gradually shown great potential in cardiovascular biomaterials for regulating the in vivo performances after the implantation and has received increasing attention. To construct a bioactive surface with CO-releasing properties on the surface of magnesium-based alloy to augment the anticorrosion and biocompatibility, graphene oxide (GO) was firstly modified using carboxymethyl chitosan (CS), and then CO-releasing molecules (CORM401) were introduced to synthesize a novel biocompatible nanomaterial (GOCS-CO) that can release CO in the physiological environments. The GOCS-CO was further immobilized on the magnesium alloy surface modified by polydopamine coating with Zn2+ (PDA/Zn) to create a bioactive surface capable of releasing CO in the physiological environment. The outcomes showed that the CO-releasing coating can not only significantly enhance the anticorrosion and abate the corrosion degradation rate of the magnesium alloy in a simulated physiological environment, but also endow it with good hydrophilicity and a certain ability to adsorb albumin selectively. Owing to the significant enhancement of anticorrosion and hydrophilicity, coupled with the bioactivity of GOCS, the modified sample not only showed excellent ability to prevent platelet adhesion and activation and reduce hemolysis rate but also can promote endothelial cell (EC) adhesion, proliferation as well as the expression of nitric oxide (NO) and vascular endothelial growth factor (VEGF). In the case of CO release, the hemocompatibility and EC growth behaviors were further significantly improved, suggesting that CO molecules released from the surface can significantly improve the hemocompatibility and EC growth. Consequently, the present study provides a novel surface modification method that can simultaneously augment the anticorrosion and biocompatibility of magnesium-based alloys, which will strongly promote the research and application of CO-releasing bioactive coatings for surface functionalization of cardiovascular biomaterials and devices.

3.
Biomicrofluidics ; 18(2): 024106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585003

RESUMO

Circulating tumor cells (CTCs) with different epithelial and mesenchymal phenotypes play distinct roles in the metastatic cascade. However, the influence of their phenotypic traits and chemotherapy on their transit and retention within capillaries remains unclear. To explore this, we developed a microfluidic device comprising 216 microchannels of different widths from 5 to 16 µm to mimic capillaries. This platform allowed us to study the behaviors of human breast cancer epithelial MCF-7 and mesenchymal MDA-MB-231 cells through microchannels under chemotherapy-induced stress. Our results revealed that when the cell diameter to microchannel width ratio exceeded 1.2, MCF-7 cells exhibited higher transit percentages than MDA-MB-231 cells under a flow rate of 0.13 mm/s. Tamoxifen (250 nM) reduced the transit percentage of MCF-7 cells, whereas 100 nM paclitaxel decreased transit percentages for both cell types. These differential responses were partially due to altered cell stiffness following drug treatments. When cells were entrapped at microchannel entrances, tamoxifen, paclitaxel, and high-flow stress (0.5 mm/s) induced a reduction in mitochondrial membrane potential (MMP) in MCF-7 cells. Tamoxifen treatment also elevated reactive oxygen species (ROS) levels in MCF-7 cells. Conversely, MMP and ROS levels in entrapped MDA-MB-231 cells remained unaffected. Consequently, the viability and proliferation of entrapped MCF-7 cells declined under these chemical and physical stress conditions. Our findings emphasize that phenotypically distinct CTCs may undergo selective filtration and exhibit varied responses to chemotherapy in capillaries, thereby impacting cancer metastasis outcomes. This highlights the importance of considering both cell phenotype and drug response to improve treatment strategies.

4.
Biosensors (Basel) ; 14(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38667172

RESUMO

The homeostasis of cellular calcium is fundamental for many physiological processes, while the calcium levels remain inhomogeneous within cells. During the onset of asthma, epithelial and inflammatory cells secrete platelet-derived growth factor (PDGF), inducing the proliferation and migration of airway smooth muscle (ASM) to the epidermal layer, narrowing the airway. The regulation of ASM cells by PDGF is closely related to the conduction of calcium signals. In this work, we generated subcellular-targeted FRET biosensors to investigate calcium regulation in the different compartments of ASM cells. A PDGF-induced cytoplasmic calcium [Ca2+]C increase was attributed to both extracellular calcium influx and endoplasmic reticulum (ER) calcium [Ca2+]ER release, which was partially regulated by the PLC-IP3R pathway. Interestingly, the removal of the extracellular calcium influx led to inhibited ER calcium release, likely through inhibitory effects on the calcium-dependent activation of the ER ryanodine receptor. The inhibition of the L-type calcium channel on the plasma membrane or the SERCA pump on the ER resulted in both reduced [Ca2+]C and [Ca2+]ER from PDGF stimulation, while IP3R channel inhibition led to reduced [Ca2+]C only. The inhibited SERCA pump caused an immediate [Ca2+]C increase and [Ca2+]ER decrease, indicating active calcium exchange between the cytosol and ER storage in resting cells. PDGF-induced calcium at the outer mitochondrial membrane sub-region showed a similar regulatory response to cytosolic calcium, not influenced by the inhibition of the mitochondrial calcium uniporter channel. Therefore, our work identifies calcium flow pathways among the extracellular medium, cell cytosol, and ER via regulatory calcium channels. Specifically, extracellular calcium flow has an essential function in fully activating ER calcium release.


Assuntos
Técnicas Biossensoriais , Cálcio , Transferência Ressonante de Energia de Fluorescência , Miócitos de Músculo Liso , Fator de Crescimento Derivado de Plaquetas , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Cálcio/metabolismo , Miócitos de Músculo Liso/metabolismo , Humanos , Retículo Endoplasmático/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio
5.
Biosensors (Basel) ; 14(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667199

RESUMO

C-terminal Src kinase (CSK) is the major inhibitory kinase for Src family kinases (SFKs) through the phosphorylation of their C-tail tyrosine sites, and it regulates various types of cellular activity in association with SFK function. As a cytoplasmic protein, CSK needs be recruited to the plasma membrane to regulate SFKs' activity. The regulatory mechanism behind CSK activity and its subcellular localization remains largely unclear. In this work, we developed a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) to visualize the CSK activity in live cells. The biosensor, with an optimized substrate peptide, confirmed the crucial Arg107 site in the CSK SH2 domain and displayed sensitivity and specificity to CSK activity, while showing minor responses to co-transfected Src and Fyn. FRET measurements showed that CSK had a relatively mild level of kinase activity in comparison to Src and Fyn in rat airway smooth muscle cells. The biosensor tagged with different submembrane-targeting signals detected CSK activity at both non-lipid raft and lipid raft microregions, while it showed a higher FRET level at non-lipid ones. Co-transfected receptor-type protein tyrosine phosphatase alpha (PTPα) had an inhibitory effect on the CSK FRET response. The biosensor did not detect obvious changes in CSK activity between metastatic cancer cells and normal ones. In conclusion, a novel FRET biosensor was generated to monitor CSK activity and demonstrated CSK activity existing in both non-lipid and lipid raft membrane microregions, being more present at non-lipid ones.


Assuntos
Técnicas Biossensoriais , Proteína Tirosina Quinase CSK , Transferência Ressonante de Energia de Fluorescência , Humanos , Animais , Proteína Tirosina Quinase CSK/metabolismo , Ratos , Quinases da Família src/metabolismo , Fosforilação , Microdomínios da Membrana/metabolismo , Domínios de Homologia de src
6.
Theranostics ; 14(4): 1744-1763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389834

RESUMO

Rationale: Bitter taste receptors (TAS2Rs) are abundantly expressed in airway smooth muscle cells (ASMCs), which have been recognized as promising targets for bitter agonists to initiate relaxation and thereby prevent excessive airway constriction as the main characteristic of asthma. However, due to the current lack of tested safe and potent agonists functioning at low effective concentrations, there has been no clinically approved TAS2R-based drug for bronchodilation in asthma therapy. This study thus aimed at exploring TAS2R agonists with bronchodilator potential by BitterDB database analysis and cell stiffness screening. Methods: Bitter compounds in the BitterDB database were retrieved and analyzed for their working subtype of TAS2R and effective concentration. Compounds activating TAS2R5, 10, and 14 at < 100 µM effective concentration were identified and subsequently screened by cell stiffness assay using optical magnetic twisting cytometry (OMTC) to identify the most potent to relax ASMCs. Then the compound identified was further characterized for efficacy on various aspects related to relaxation of ASMCs, incl. but not limited to traction force by Fourier transform traction force microscopy (FTTFM), [Ca2+]i signaling by Fluo-4/AM intensity, cell migration by scratch wound healing, mRNA expression by qPCR, and protein expressing by ELISA. The compound identified was also compared to conventional ß-agonist (isoproterenol and salbutamol) for efficacy in reducing cell stiffness of cultured ASMCs and airway resistance of ovalbumin-treated mice. Results: BitterDB analysis found 18 compounds activating TAS2R5, 10, and 14 at < 100 µM effective concentration. Cell stiffness screening of these compounds eventually identified flufenamic acid (FFA) as the most potent compound to rapidly reduce cell stiffness at 1 µM. The efficacy of FFA to relax ASMCs in vitro and abrogate airway resistance in vivo was equivalent to that of conventional ß-agonists. The FFA-induced effect on ASMCs was mediated by TAS2R14 activation, endoplasmic reticulum Ca2+ release, and large-conductance Ca2+-activated K+ (BKCa) channel opening. FFA also attenuated lipopolysaccharide-induced inflammatory response in cultured ASMCs. Conclusions: FFA as a potent TAS2R14 agonist to relax ASMCs while suppressing cytokine release might be a favorite drug agent for further development of TAS2R-based novel dual functional medication for bronchodilation and anti-inflammation in asthma therapy.


Assuntos
Asma , Ácido Flufenâmico , Camundongos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Pulmão/metabolismo , Miócitos de Músculo Liso/metabolismo , Asma/tratamento farmacológico
7.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339025

RESUMO

Ventilator-induced lung injury (VILI) during mechanical ventilation (MV) has been attributed to airway remodeling involving increased airway smooth muscle cells (ASMCs), but the underlying mechanism is not fully understood. Thus, we aimed to investigate whether MV-associated high stretch (>10% strain) could modulate mechanosensitive Piezo1 expression and thereby alter cell migration of ASMCs as a potential pathway to increased ASMCs in VILI. C57BL/6 mice and ASMCs were subjected to MV at high tidal volume (VT, 18 mL/kg, 3 h) and high stretch (13% strain, 0.5 Hz, 72 h), respectively. Subsequently, the mice or cells were evaluated for Piezo1 and integrin mRNA expression by immunohistochemical staining and quantitative PCR (qPCR), and cell migration and adhesion by transwell and cell adhesion assays. Cells were either treated or not with Piezo1 siRNA, Piezo1-eGFP, Piezo1 knockin, Y27632, or blebbistatin to regulate Piezo1 mRNA expression or inhibit Rho-associated kinase (ROCK) signaling prior to migration or adhesion assessment. We found that expression of Piezo1 in in situ lung tissue, mRNA expression of Piezo1 and integrin αVß1 and cell adhesion of ASMCs isolated from mice with MV were all reduced but the cell migration of primary ASMCs (pASMCs) isolated from mice with MV was greatly enhanced. Similarly, cell line mouse ASMCs (mASMCs) cultured in vitro with high stretch showed that mRNA expression of Piezo1 and integrin αVß1 and cell adhesion were all reduced but cell migration was greatly enhanced. Interestingly, such effects of MV or high stretch on ASMCs could be either induced or abolished/reversed by down/up-regulation of Piezo1 mRNA expression and inhibition of ROCK signaling. High stretch associated with MV appears to be a mechanical modulator of Piezo1 mRNA expression and can, thus, promote cell migration of ASMCs during therapeutic MV. This may be a novel mechanism of detrimental airway remodeling associated with MV, and, therefore, a potential intervention target to treat VILI.


Assuntos
Asma , Camundongos , Animais , Asma/metabolismo , Respiração Artificial/efeitos adversos , Remodelação das Vias Aéreas , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/metabolismo , Proliferação de Células , Células Cultivadas , Canais Iônicos/genética , Canais Iônicos/metabolismo
8.
Cells ; 13(2)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38247802

RESUMO

High stretch (>10% strain) of airway smooth muscle cells (ASMCs) due to mechanical ventilation (MV) is postulated to contribute to ventilator-induced lung injury (VILI), but the underlying mechanisms remain largely unknown. We hypothesized that ASMCs may respond to high stretch via regulatory miRNA-mRNA interactions, and thus we aimed to identify high stretch-responsive cellular events and related regulating miRNA-mRNA interactions in cultured human ASMCs with/without high stretch. RNA-Seq analysis of whole genome-wide miRNAs revealed 12 miRNAs differentially expressed (DE) in response to high stretch (7 up and 5 down, fold change >2), which target 283 DE-mRNAs as identified by a parallel mRNA sequencing and bioinformatics analysis. The KEGG and GO analysis further indicated that purine metabolism was the first enriched event in the cells during high stretch, which was linked to miR-370-5p-PDE4D/AK7. Since PDE4D/AK7 have been previously linked to cAMP/ATP metabolism in lung diseases and now to miR-370-5p in ASMCs, we thus evaluated the effect of high stretch on the cAMP/ATP level inside ASMCs. The results demonstrated that high stretch modulated the cAMP/ATP levels inside ASMCs, which could be largely abolished by miR-370-5p mimics. Together, these findings indicate that miR-370-5p-PDE4D/AK7 mediated high stretch-induced modulation of cAMP and ATP synthesis inside ASMCs. Furthermore, such interactive miRNA-mRNA pairs may provide new insights for the discovery of effective biomarkers/therapeutic targets for the diagnosis and treatment of VILI and other MV-associated respiratory diseases.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Miócitos de Músculo Liso , RNA Mensageiro/genética , Purinas , Trifosfato de Adenosina
9.
Biochem Biophys Res Commun ; 693: 149368, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38091838

RESUMO

Tunneling nanotubes (TNTs) are elastic tubular structures that physically link cells, facilitating the intercellular transfer of organelles, chemical signals, and electrical signals. Despite TNTs serving as a multifunctional pathway for cell-cell communication, the transmission of mechanical signals through TNTs and the response of TNT-connected cells to these forces remain unexplored. In this study, external mechanical forces were applied to induce TNT bending between rat kidney (NRK) cells using micromanipulation. These forces, transmitted via TNTs, induced reduced curvature of the actin cortex and increased membrane tension at the TNT-connected sites. Additionally, TNT bending results in an elevation of intracellular calcium levels in TNT-connected cells, a response attenuated by gadolinium ions, a non-selective mechanosensitive calcium channel blocker. The degree of TNT deflection positively correlated with decreased actin cortex curvature and increased calcium levels. Furthermore, stretching TNT due to the separation of TNT-connected cells resulted in decreased actin cortex curvature and increased intracellular calcium in TNT-connected cells. The levels of these cellular responses depended on the length changes of TNTs. Moreover, TNT connections influence cell migration by regulating cell rotation, which involves the activation of mechanosensitive calcium channels. In conclusion, our study revealed the transmission of mechanical signals through TNTs and the subsequent responses of TNT-connected cells, highlighting a previously unrecognized communication function of TNTs. This research provides valuable insights into the role of TNTs in long-distance intercellular mechanical signaling.


Assuntos
Actinas , Nanotubos , Ratos , Animais , Cálcio/metabolismo , Comunicação Celular/fisiologia , Linhagem Celular , Nanotubos/química
10.
Int J Biol Macromol ; 253(Pt 2): 126791, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37683748

RESUMO

Corneal disease is an important clinical problem that affects millions of blind people and keratoplasty is currently the most successful treatment for corneal blindness. Unfortunately, there is a very high risk of bacterial infection during corneal transplantation. In this study, we proposed a novel synthetic collagen-based film for corneal therapy, and we effectively incorporated aminoglycoside gentamicin molecules onto the surface of the collagen film. We anticipate that this collagen-based substance will be antimicrobial and repair corneal tissue damage. Three steps were used to create this gentamicin-modified carboxylated collagen film, including: (i) Cross-link the collagen molecules with 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide and n-hydroxysuccinimide to create a collagen (Col) film. (ii) Citric acid was used to modify the Col film's surface in order to increase the number of carboxyl groups there (ColCA). (iii) Gentamicin molecules were grafted onto the surface of ColCA film by forming amide bonds (ColCA-GM). We discovered that this ColCA-GM film has good physicochemical properties and excellent biocompatibility. Furthermore, it was demonstrated that treating collagen films with citric acid significantly improved the antibacterial properties of ColCA-GM film. The outcomes point to a variety of potential applications for this novel film in corneal tissue engineering.


Assuntos
Gentamicinas , Engenharia Tecidual , Humanos , Gentamicinas/farmacologia , Ácido Cítrico/química , Colágeno/química , Antibacterianos/farmacologia
11.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37511012

RESUMO

Blindness is frequently caused by corneal abnormalities, and corneal transplantation is the most effective treatment method. It is extremely important to develop high-quality artificial corneas because there are not enough donor corneas accessible for cornea transplantation. One of the most-often utilized materials is collagen, which is the primary component of natural cornea. Collagen-based corneal repair materials have good physicochemical properties and excellent biocompatibility, but how to promote the regeneration of the corneal nerve after keratoplasty is still a big challenge. In this research, in order to promote the growth of nerve cells on a collagen (Col) substrate, a novel collagen-based material was synthesized starting from the functionalization of collagen with unsaturated methacryloyl groups that three-dimensionally photopolymerize to a 3D network of chemically crosslinked collagen (ColMA), onto which taurine molecules were eventually grafted (ColMA-Tr). The physicochemical properties and biocompatibility of the Col, ColMA and ColMA-Tr films were evaluated. By analyzing the results, we found that all the three samples had good moisture retention and aq high covalent attachment of methacryloyl groups followed by their photopolymerization improved the mechanical properties of the ColMA and ColMA-Tr. Most importantly, compared with ColMA, the taurine-modified collagen-MA film significantly promoted the growth of nerve cells and corneal epithelial cells on its surface. Our preliminary results suggest that this novel ColMA-Tr film may have potential use in cornea tissue engineering in the future.


Assuntos
Córnea , Transplante de Córnea , Colágeno/química , Engenharia Tecidual/métodos , Regeneração Nervosa , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
12.
ACS Biomater Sci Eng ; 9(8): 4846-4854, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37418666

RESUMO

Cell-generated contraction force is the primary physical drive for fibrotic densification of biological tissues. Previous studies using two-dimensional culture models have shown that epithelial cells inhibit the myofibroblast-derived contraction force via the regulation of the fibroblast/myofibroblast transition (FMT). However, it remains unclear how epithelial cells interact with fibroblasts and myofibroblasts to determine the mechanical consequences and spatiotemporal regulation of fibrosis development. In this study, we established a three-dimensional microtissue model using an NIH/3T3 fibroblast-laden collagen hydrogel, incorporated with a microstring-based force sensor, to assess fibrosis mechanics. When Madin-Darby canine kidney epithelial cells were cocultured on the microtissue's surface, the densification, stiffness, and contraction force of the microtissue greatly decreased compared to the monocultured microtissue without epithelial cells. The key fibrotic features, such as enhanced protein expression of α-smooth muscle actin, fibronectin, and collagen indicating FMT and matrix deposition, respectively, were also significantly reduced. The antifibrotic effects of epithelial cells on the microtissue were dependent on the intercellular signaling molecule prostaglandin E2 (PGE2) with an effective concentration of 10 µM and their proximity to the fibroblasts, indicating paracrine cellular signaling between the two types of cells during tissue fibrosis. The effect of PGE2 on microtissue contraction was also dependent on the time point when PGE2 was delivered or blocked, suggesting that the presence of epithelial cells at an early stage is critical for preventing or treating advanced fibrosis. Taken together, this study provides insights into the spatiotemporal regulation of mechanical properties of fibrosis by epithelial cells, and the cocultured microtissue model incorporated with a real-time and sensitive force sensor will be a suitable system for evaluating fibrosis and drug screening.


Assuntos
Dinoprostona , Fibroblastos , Animais , Cães , Dinoprostona/farmacologia , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Células Epiteliais/metabolismo , Fibrose
13.
Biomed Mater ; 18(3)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36863020

RESUMO

Quercetin (QU) has been widely used as a dietary supplement and proved useful to treat lung diseases. However, the therapeutic potential of QU may be restricted because of its low bioavailability and poor water solubility. In this study, we investigated the effects of developed QU-loaded liposomes on macrophage-mediated lung inflammation.In vivo, a mouse model of sepsis induced by lipopolysaccharide challenge was used to detect the anti-inflammatory effects of liposomal QU. Hematoxylin/eosin staining and immunostaining were utilized to reveal pathological damage and leukocyte infiltration into the lung tissues. Quantitative reverse transcription-polymerase chain reaction and immunoblotting were used to determine cytokine production in the mouse lungs.In vitro, mouse RAW 264.7 macrophages were treated with free QU and liposomal QU. Cell viability assay and immunostaining were utilized to detect cytotoxicity and distribution of QU in the cells. Thein vivoresults showed that liposomal encapsulation promoted the inhibitory effects of QU on lung inflammation. Liposomal QU decreased mortality in septic mice with no obvious toxicity on vital organs. Mechanistically, the anti-inflammatory effects of liposomal QU were associated with inhibition of nuclear factor-kappa B-dependent cytokine production and inflammasome activation in macrophages. Collectively, the results showed that QU liposomes mitigated lung inflammation in septic mice through inhibition of macrophage inflammatory signaling.


Assuntos
Pneumonia , Sepse , Camundongos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Lipossomos , Lipopolissacarídeos , Modelos Animais de Doenças , Pneumonia/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Sepse/tratamento farmacológico , Citocinas , Inflamação/tratamento farmacológico
14.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835223

RESUMO

Ventilator-induced lung injury (VILI) occurs in mechanically ventilated patients of respiratory disease and is typically characterized by airway inflammation. However, recent studies increasingly indicate that a major cause of VILI may be the excessive mechanical loading such as high stretch (>10% strain) on airway smooth muscle cells (ASMCs) due to mechanical ventilation (MV). Although ASMCs are the primary mechanosensitive cells in airways and contribute to various airway inflammation diseases, it is still unclear how they respond to high stretch and what mediates such a response. Therefore, we used whole genome-wide mRNA-sequencing (mRNA-Seq), bioinformatics, and functional identification to systematically analyze the mRNA expression profiles and signaling pathway enrichment of cultured human ASMCs exposed to high stretch (13% strain), aiming to screen the susceptible signaling pathway through which cells respond to high stretch. The data revealed that in response to high stretch, 111 mRNAs with count ≥100 in ASMCs were significantly differentially expressed (defined as DE-mRNAs). These DE-mRNAs are mainly enriched in endoplasmic reticulum (ER) stress-related signaling pathways. ER stress inhibitor (TUDCA) abolished high-stretch-enhanced mRNA expression of genes associated with ER stress, downstream inflammation signaling, and major inflammatory cytokines. These results demonstrate in a data-driven approach that in ASMCs, high stretch mainly induced ER stress and activated ER stress-related signaling and downstream inflammation response. Therefore, it suggests that ER stress and related signaling pathways in ASMCs may be potential targets for timely diagnosis and intervention of MV-related pulmonary airway diseases such as VILI.


Assuntos
Pulmão , Respiração Artificial , Humanos , Pulmão/metabolismo , Estresse do Retículo Endoplasmático , Inflamação/metabolismo , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/metabolismo
15.
Neuroimage ; 269: 119934, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754123

RESUMO

Human brain experiences vibration of certain magnitude and frequency during various physical activities such as vehicle transportation and machine operation, which may cause traumatic brain injury or other brain diseases. However, the mechanisms of brain pathogenesis due to vibration are not fully elucidated due to the lack of techniques to study brain functions while applying vibration to the brain at a specific magnitude and frequency. Here, this study reported a custom-built head-worn electromagnetic actuator that applied vibration to the brain in vivo at an accurate frequency inside a magnetic resonance imaging scanner while cerebral blood flow (CBF) was acquired. Using this technique, CBF values from 45 healthy volunteers were quantitatively measured immediately following vibration at 20, 30, 40 Hz, respectively. Results showed increasingly reduced CBF with increasing frequency at multiple regions of the brain, while the size of the regions expanded. Importantly, the vibration-induced CBF reduction regions largely fell inside the brain's default mode network (DMN), with about 58 or 46% overlap at 30 or 40 Hz, respectively. These findings demonstrate that vibration as a mechanical stimulus can change strain conditions, which may induce CBF reduction in the brain with regional differences in a frequency-dependent manner. Furthermore, the overlap between vibration-induced CBF reduction regions and DMN suggested a potential relationship between external mechanical stimuli and cognitive functions.


Assuntos
Encéfalo , Vibração , Humanos , Imageamento por Ressonância Magnética , Cognição , Circulação Cerebrovascular/fisiologia
16.
Biol Pharm Bull ; 46(1): 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36596517

RESUMO

Inspired by the well-known phenomenon of stretch-induced airway dilation in normal lungs and the emerging stretch-responsive Piezo1 channels that can be chemically activated by specific agonists such as Yoda1, we attempted to investigate whether chemical activation of Piezo1 by Yoda1 can modulate the biomechanical behaviors of airway smooth muscle cells (ASMCs) so that it may be exploited as a novel approach for bronchodilation. Thus, we treated in vitro cultured rat ASMCs with Yoda1, and examined the cells for calcium signaling, cell stiffness, traction force, cell migration, and the mRNA expression and distribution of molecules relevant to cell biomechanics. The data show that ASMCs expressed abundant mRNA of Piezo1. ASMCs exposed to 1 µM Yoda1 exhibited a potent but transient Ca2+ signaling, and treatment with 1 µM Yoda1 for 24 h led to decreased cell stiffness and traction force, all of which were partially reversed by Piezo1 inhibitor GsMTx4 and Piezo1 knockdown, respectively. In addition, ASMCs treated with 1 µM Yoda1 for 24 h exhibited impaired horizontal but enhanced vertical cell migration, as well as significant changes in key components of cells' contractile machinery including the structure and distribution of stress fibers and alpha-smooth muscle actin (α-SMA) fibrils, the mRNA expression of molecules associated with cell biomechanics. These results provide the first evidence that chemical activation of Piezo1 by Yoda1 resulted in marked pro-relaxation alterations of biomechanical behaviors and contractile machinery of the ASMCs. These findings suggest that Piezo1-specific agonists may indeed have great potential as alternative drug agents for relaxing ASMCs.


Assuntos
Sinalização do Cálcio , Miócitos de Músculo Liso , Ratos , Animais , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/metabolismo
17.
Front Pharmacol ; 13: 1033043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578545

RESUMO

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge to human health and the world economy. However, it is difficult to widely use conventional animal and cell culture models in understanding the underlying pathological mechanisms of COVID-19, which in turn hinders the development of relevant therapeutic treatments, including drugs. To overcome this challenge, various three-dimensional (3D) pulmonary cell culture models such as organoids are emerging as an innovative toolset for simulating the pathophysiology occurring in the respiratory system, including bronchial airways, alveoli, capillary network, and pulmonary interstitium, which provide a robust and powerful platform for studying the process and underlying mechanisms of SARS-CoV-2 infection among the potential primary targets in the lung. This review introduces the key features of some of these recently developed tools, including organoid, lung-on-a-chip, and 3D bioprinting, which can recapitulate different structural compartments of the lung and lung function, in particular, accurately resembling the human-relevant pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent progress in developing organoids for alveolar and airway disease modeling and their applications for discovering drugs against SARS-CoV-2 infection are highlighted. These innovative 3D cell culture models together may hold the promise to fully understand the pathogenesis and eventually eradicate the pandemic of COVID-19.

18.
Front Cell Dev Biol ; 10: 955676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238686

RESUMO

Tunneling nanotubes (TNTs) are thin membrane tubular structures that interconnect physically separated cells. Growing evidence indicates that TNTs play unique roles in various diseases by facilitating intercellular transfer of signaling and organelles, suggesting TNTs as a potential target for disease treatment. The efficiency of TNT-dependent communication is largely determined by the number of TNTs between cells. Though TNTs are physically fragile structures, the mechanical properties of TNTs and the determinants of their mechanical stability are still unclear. Here, using atomic force microscope (AFM) and microfluidic techniques, we investigated the mechanical behavior and abundance of TNTs in human embryonic kidney (HEK293) cells upon the application of forces. AFM measurements demonstrate that TNTs are elastic structures with an apparent spring constant of 79.1 ± 16.2 pN/µm. The stiffness and membrane tension of TNTs increase by length. TNTs that elongate slower than 0.5 µm/min display higher mechanical stability, due to the growth rate of F-actin inside TNTs being limited at 0.26 µm/min. Importantly, by disturbing the cytoskeleton, membrane, or adhesion proteins of TNTs, we found that F-actin and cadherin connection dominantly determines the tensile strength and flexural strength of TNTs respectively. It may provide new clues for screening TNT-interfering drugs that alter the stability of TNTs.

19.
Front Cell Dev Biol ; 10: 942058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051439

RESUMO

Cell-cell mechanical communications at a large spatial scale (above hundreds of micrometers) have been increasingly recognized in recent decade, which shows importance in tissue-level assembly and morphodynamics. The involved mechanosensing mechanism and resulted physiological functions are still to be fully understood. Recent work showed that traction force sensation in the matrix induces cell communications for self-assembly. Here, based on the experimental model of cell directional migration on Matrigel hydrogel, containing 0.5 mg/ml type I collagen, we studied the mechano-responsive pathways for cell distant communications. Airway smooth muscle (ASM) cells assembled network structure on the hydrogel, whereas stayed isolated individually when cultured on glass without force transmission. Cell directional migration, or network assembly was significantly attenuated by inhibited actomyosin activity, or inhibition of inositol 1,4,5-trisphosphate receptor (IP3R) calcium channel or SERCA pump on endoplasmic reticulum (ER) membrane, or L-type calcium channel on the plasma membrane. Inhibition of integrin ß1 with siRNA knockdown reduced cell directional migration and branching assembly, whereas inhibition of cell junctional N-cadherin with siRNA had little effect on distant attractions but blocked branching assembly. Our work demonstrated that the endoplasmic reticulum calcium channels and integrin are mechanosensing signals for cell mechanical communications regulated by actomyosin activity, while N-cadherin is responsible for traction force-induced cell stable connections in the assembly.

20.
J Funct Biomater ; 13(3)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35893466

RESUMO

Corneal defects can seriously affect human vision, and keratoplasty is the most widely accepted therapy method for visual rehabilitation. Currently, effective treatment for clinical patients has been restricted due to a serious shortage of donated cornea tissue and high-quality artificial repair materials. As the predominant component of cornea tissue, collagen-based materials have promising applications for corneal repair. However, the corneal nerve repair and epithelization process after corneal transplantation must be improved. This research proposes a new collagen-based scaffold with good biocompatibility and biological functionality enhanced by surface chemical grafting of natural taurine molecular. The chemical composition of collagen-taurine (Col-Tau) material is evaluated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and its hydrophilic properties, light transmittance, swelling performance and mechanical tensile properties have been measured. The research results indicate that the Col-Tau sample has high transmittance and good mechanical properties, and exhibits excellent capacity to promote corneal nerve cell growth and the epithelization process of corneal epithelial cells. This novel Col-Tau material, which can be easily prepared at a low cost, should have significant application potential for the treating corneal disease in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA