Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 449: 139213, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631134

RESUMO

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Assuntos
Fermentação , Aromatizantes , Odorantes , Pyrus , Saccharomyces cerevisiae , Sorbitol , Paladar , Vinho , Vinho/análise , Vinho/microbiologia , Pyrus/química , Pyrus/microbiologia , Pyrus/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Aromatizantes/metabolismo , Aromatizantes/química , Sorbitol/metabolismo , Sorbitol/análise , Odorantes/análise , Etanol/metabolismo , Etanol/análise , Pichia/metabolismo , Metschnikowia/metabolismo , Frutas/química , Frutas/microbiologia , Frutas/metabolismo
2.
Int J Biol Macromol ; 250: 126059, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544557

RESUMO

The ultraviolet (UV) blocking performance of current bio-based devices is always limited by delignification and exploited chemical treatment. Lignocellulosic nanofibril (LCNF) is a promising green alternative that could efficiently impede UV radiation. Herein, we proposed a robust LCNF film that achieved 99.8 ± 0.19 % UVB blocking, 96.1 ± 0.23 % UVA blocking, and was highly transparent without complex chemical modification. Compared to conventional lignin composites, this LCNF method involves 29.5 ± 2.31 % lignin content directly extracted from bamboo as a broad-spectrum sun blocker. This bamboo-based LCNF film revealed an excellent tensile strength of 94.9 ± 3.6 MPa and outstanding stability, adapting to the natural environment's variability. The residual hemicellulose could also embed the link between lignin and cellulose, confirming high lignin content in the network. The connection between lignin and hemicelluloses in the cellulose network was explored and described for the fibrillation of lignocellulosic nanofibrils. This research highlights the promising development of LCNFs for UV protection and bio-based solar absorption materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...