Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Animal Model Exp Med ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803038

RESUMO

BACKGROUND: The aim was to elucidate the function of IL-37 in middle east respiratory syndrome coronavirus (MERS-CoV) infection, thereby providing a novel therapeutic strategy for managing the clinical treatment of inflammatory response caused by respiratory virus infection. METHODS: We investigated the development of MERS by infecting hDPP4 mice with hCoV-EMC (107 TCID50 [50% tissue culture infectious dose]) intranasally. We infected A549 cells with MERS-CoV, which concurrently interfered with IL-37, detecting the viral titer, viral load, and cytokine expression at certain points postinfection. Meanwhile, we administered IL-37 (12.5 µg/kg) intravenously to hDPP4 mice 2 h after MERS-CoV-2 infection and collected the serum and lungs 5 days after infection to investigate the efficacy of IL-37 in MERS-CoV infection. RESULTS: The viral titer of MERS-CoV-infected A549 cells interfering with IL-37 was significantly reduced by 4.7-fold, and the viral load of MERS-CoV-infected hDPP4 mice was decreased by 59-fold in lung tissue. Furthermore, the administration of IL-37 suppressed inflammatory cytokine and chemokine (monocyte chemoattractant protein 1, interferon-γ, and IL-17A) expression and ameliorated the infiltration of inflammatory cells in hDPP4 mice. CONCLUSION: IL-37 exhibits protective properties in severe pneumonia induced by MERS-CoV infection. This effect is achieved through attenuation of lung viral load, suppression of inflammatory cytokine secretion, reduction in inflammatory cell infiltration, and mitigation of pulmonary injury.

2.
Signal Transduct Target Ther ; 9(1): 98, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609366

RESUMO

Evidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes. Herein, we retrospectively analyzed pancreatic lesions in autopsy tissues from 67 SARS-CoV-2 infected non-human primates (NHPs) models and 121 vaccinated and infected NHPs from 2020 to 2023 and COVID-19 patients. Multi-label immunofluorescence revealed direct infection of both exocrine and endocrine pancreatic cells by the virus in NHPs and humans. Minor and limited phenotypic and histopathological changes were observed in adult models. Systemic proteomics and metabolomics results indicated metabolic disorders, mainly enriched in insulin resistance pathways, in infected adult NHPs, along with elevated fasting C-peptide and C-peptide/glucose ratio levels. Furthermore, in elder COVID-19 NHPs, SARS-CoV-2 infection causes loss of beta (ß) cells and lower expressed-insulin in situ characterized by islet amyloidosis and necrosis, activation of α-SMA and aggravated fibrosis consisting of lower collagen in serum, an increase of pancreatic inflammation and stress markers, ICAM-1 and G3BP1, along with more severe glycometabolic dysfunction. In contrast, vaccination maintained glucose homeostasis by activating insulin receptor α and insulin receptor ß. Overall, the cumulative risk of diabetes post-COVID-19 is closely tied to age, suggesting more attention should be paid to blood sugar management in elderly COVID-19 patients.


Assuntos
COVID-19 , Diabetes Mellitus , Adulto , Animais , Humanos , Idoso , SARS-CoV-2 , Receptor de Insulina , Peptídeo C , DNA Helicases , Estudos Retrospectivos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Glucose
3.
Sensors (Basel) ; 23(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067675

RESUMO

Wire rope breakage, as damage easily produced during the service period of wire rope, is an important factor affecting the safe operation of elevators. Especially in the high-speed elevator operation process, the problem of magnetization unsaturation caused by speed effects can easily lead to deformation of the magnetic flux leakage detection signal, thereby affecting the accuracy and reliability of wire breakage quantitative detection. Therefore, this article focuses on the problem that existing wire rope detection methods cannot perform non-destructive testing on high-speed elevator wire ropes and conducts design and experimental research on a high-speed running wire rope breakage detection device based on the principle of multi-stage excitation. The main research content includes simulation research on the multistage excitation, structural design, and simulation optimization of open-close copper sheet magnetizers and the building of a detection device for wire rope breakage detection experimental research. The simulation and experimental results show that the multistage magnetization method can effectively solve the problem of magnetization unsaturation caused by the velocity effect. The multistage excitation device has a good wire breakage recognition effect for speeds less than or equal to 3 m/s. It can detect magnetic leakage signals with a minimum of four broken wires and has good detection accuracy. It is a new and effective wire breakage detection device for high-speed elevator wire rope, providing important technical support for the safe and reliable operation of high-speed elevators.

4.
Proc Natl Acad Sci U S A ; 120(18): e2301775120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094153

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (Mpro), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 Å and 1.65 Å, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19.


Assuntos
COVID-19 , Humanos , Antivirais/farmacologia , SARS-CoV-2 , Quercetina/farmacologia , Anti-Inflamatórios/farmacologia , Simulação de Acoplamento Molecular
5.
Environ Sci Pollut Res Int ; 30(21): 60538-60551, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37036646

RESUMO

Waste slag has low nutrient content, so it has insufficient nutrient cycling and transformation in the soil ecosystem. There are few studies on the application of oligotrophic phosphate-solubilizing bacteria and phosphate (P) fertilizer to improve the properties of waste slags. In this study, three oligotrophic bacterial strains with P solubilizing activity, namely, Bacillus subtilis 2C (7.23 µg/mL), Bacillus subtilis 6C (4.07 µg/mL), and Bacillus safensis 2N (5.05 µg/mL), were isolated from waste slags. In the pot experiment, compared with no application of P fertilizer, inoculation of Bacillus subtilis 2C with a 50% recommended dose of P fertilizer significantly increased the available phosphorus (AP), total phosphorus (TP), and total nitrogen (TN) in slag by 33.16%, 76.70%, and 233.33%, respectively. The N, P uptake and fresh weight of Lolium multiflorum Lam. were significantly improved by 114.15%, 139.02%, and 100%, respectively. The analysis of the bacterial community showed that the application of P fertilizer decreased the diversity and richness of the bacterial community, and with the addition of phosphorus fertilizer and Bacillus subtilis 2C, the bacterial community in the slag developed towards eutrophication. Redundancy analysis (RDA) showed that the TP content in the slag was significantly correlated with the bacterial community (P = 0.001, < 0.01), followed by the TN content. This study on different P fertilizer application methods can provide some basic ideas for improving the performance of waste slag.


Assuntos
Ecossistema , Lolium , Fertilizantes/análise , Bactérias , Fósforo/farmacologia , Fosfatos/farmacologia , Solo , Fertilização , Microbiologia do Solo , Nitrogênio/análise
6.
Animal Model Exp Med ; 6(1): 51-56, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36808904

RESUMO

BACKGROUND: New Omicron subvariants are emerging rapidly from BA.1 to BA.4 and BA.5. Their pathogenicity has changed from that of wild-type (WH-09) and Omicron variants have over time become globally dominant. The spike proteins of BA.4 and BA.5 that serve as the target for vaccine-induced neutralizing antibodies have also changed compared to the previous subvariants, which is likely to cause immune escape and the reduction of the protective effect of the vaccine. Our study addresses the above issues and provides a basis for formulating relevant prevention and control strategies. METHODS: We collected cellular supernatant and cell lysates and measured the viral titers, viral RNA loads, and E subgenomic RNA (E sgRNA) loads in different Omicron subvariants grown in Vero E6 cells, using WH-09 and Delta variants as a reference. Additionally, we evaluated the in vitro neutralizing activity of different Omicron subvariants and compared it to the WH-09 and Delta variants using macaque sera with different types of immunity. RESULTS: As the SARS-CoV-2 evolved into Omicron BA.1, the replication ability in vitro began to decrease. Then with the emergence of new subvariants, the replication ability gradually recovered and became stable in the BA.4 and BA.5 subvariants. In WH-09-inactivated vaccine sera, geometric mean titers of neutralization antibodies against different Omicron subvariants declined by 3.7~15.4-fold compared to those against WH-09. In Delta-inactivated vaccine sera, geometric mean titers of neutralization antibodies against Omicron subvariants declined by 3.1~7.4-fold compared to those against Delta. CONCLUSION: According to the findings of this research, the replication efficiency of all Omicron subvariants declined compared with WH-09 and Delta variants, and was lower in BA.1 than in other Omicron subvariants. After two doses of inactivated (WH-09 or Delta) vaccine, cross-neutralizing activities against various Omicron subvariants were seen despite a decline in neutralizing titers.


Assuntos
Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Replicação Viral , Animais , COVID-19/virologia , Macaca , SARS-CoV-2/fisiologia , RNA Subgenômico
8.
ACS Appl Mater Interfaces ; 14(45): 51555-51563, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36345781

RESUMO

Oil/water separation by porous materials has received growing interest over the past years since the ever-increasing oily wastewater discharges seriously threaten our living environment. Purification of nano-sized and concentrated emulsions remains a big challenge because of the sharp flux decline by blocking the pores and fouling the surfaces of those porous materials. Herein, we propose a solar-driven evaporator possessing thin-film-composite architecture to deal with these two bottlenecks. Inspired by plant roots, our evaporator composes of a large-pore sponge wrapped by a thin hydrogel film, which is constructed by the contra-diffusion and cross-linking of alginate and calcium ions at the sponge surface. The dense superoleophobic hydrogel layer serves as a selective barrier that prevents oil emulsions but allows water permeation, while the inner sponge with large pores facilitates water transport within the evaporator, ensuring sufficient water supply for evaporation. By splitting the single evaporator into an array, the evaporator performs a high evaporation rate of ∼3.10 kg·m-2·h-1 and oil removal efficiency above 99.9% for a variety of oil emulsions. Moreover, it displays a negligible decline in the evaporation rate when treating concentrated emulsions for 8 h.

9.
Materials (Basel) ; 15(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431554

RESUMO

In this paper, the effect of temperature on rheological properties of magnetorheological (MR) gel is investigated under rotational steady shear and oscillatory dynamic shear. A kind of fluid-like MR gel (MRG) was firstly synthesized by mixing carbonyl iron powder (CIP) with polymer matrix. Then, the relationship between yield stress, normal stress of MRG and shear rate under six temperatures and four magnetic field strengths were studied by rotational shear experiments. The results demonstrate that the dependence of shear stress on temperature displays an opposite tendency in comparison with that of normal stress on temperature. Moreover, maximum yield stress, one of the most important parameter of MR materials, decreases with the increment of temperature. Under oscillatory dynamic shear test, storage and loss moduli and normal stress of MRG all increase with temperature when a magnetic field is applied, which presents a contrary trend in the absence of a magnetic field. Related mechanisms about the alternation of microstructures of MRG were proposed to explain the above-mentioned phenomena. This paper is helpful in fabricating semi-active engineering devices using MR materials as a medium.

10.
Eur J Pharmacol ; 933: 175271, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36108735

RESUMO

Imbalance of macrophage polarization plays a critical role in the progression of rheumatoid arthritis (RA). Geniposide (GE) has been shown to exert anti-inflammatory effects. However, the effect of GE on macrophage polarization remains unclear. Here, we investigated the regulation of GE on the imbalance of macrophage polarization in RA and how it functions. We established a mouse model of collagen-induced arthritis (CIA) and isolated bone marrow-derived macrophages (BMDMs). The results confirmed that pro-inflammatory M1 macrophages were dominant in CIA mice, but the polarization imbalance of macrophages was restored to a certain extent after GE treatment. Furthermore, the membrane targeting of sphingosine kinase 1 (SphK1) was increased in BMDMs of CIA mice, as manifested by increased membrane and cytoplasmic expression of p-SphK1 and high secretion level of sphingosine-1-phosphate (S1P). RAW264.7 cells were stimulated with lipopolysaccharide (LPS)-interferon (IFN)-γ or interleukin (IL)-4 to induce M1 or M2 phenotype, respectively, to revalidate the results obtained in BMDMs. The results again observed SphK1 membrane targeting in LPS-IFN-γ-stimulated RAW264.7 cells. Selective inhibition of SphK1 by PF543 or inhibition of the S1P receptors by FTY720 both restored the proportion of M1 and M2 macrophages in LPS-IFN-γ-stimulated RAW264.7 cells, confirming that SphK1 membrane targeting mediated a proportional imbalance in M1 and M2 macrophage polarization. In addition, GE inhibited SphK1 membrane targeting and kinase activity. Taken together, results confirmed that the inhibition of SphK1 membrane targeting by GE was responsible for restoring the polarization balance of macrophages in CIA mice.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Cloridrato de Fingolimode/farmacologia , Interferon gama/farmacologia , Iridoides , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool) , Transdução de Sinais
11.
Int Immunopharmacol ; 111: 109087, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908504

RESUMO

Neovascularization in rheumatoid arthritis (RA) is a key bridge between malignant proliferative synovial tissue and pannus. In view of previous studies on the efficacy of Geniposide (GE) in experimentary arthritis, the purpose of this study was to investigate the possible mechanism of GE inhibiting angiogenesis by regulating the gene of phosphate and tension homology deleted on chromosome ten (PTEN). In this study, human umbilical vein endothelial cells (HUVEC) and adjuvant arthritis (AA) rat models were performed to research in vitro and in vivo. The results showed that GE treatment significantly reduced synovitis and angiogenesis in AA rats, which may be associated with the increased expression of PTEN with GE treatment. Meanwhile, the hypermethylation of PTEN accompanied by the over-expression of DNA methyltransferases (Dnmts) was demonstrated in TNF-α-induced HUVEC and AA rats. Knockdown of Dnmt1 by Dnmt1- siRNA significantly inhibited the tube formation of HUVEC in vitro. GE significantly restricted the angiogenesis of HUVEC by inhibiting DNA methylation, which was attributed to the down-regulation of Dnmt1 rather than Dnmt3a and Dnmt3b. The anti-angiogenesis effect of GE was further verified in AA model by the inhibition of Dnmt1. These results indicate that GE exhibited anti-angiogenesis effects in experimentary arthritis by inhibiting Dnmt1-mediated PTEN gene hypermethylation, which may brings new insights for the prevention and research of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Inibidores da Angiogênese/uso terapêutico , Animais , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Iridoides , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Ratos
12.
Mol Med ; 28(1): 64, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690741

RESUMO

BACKGROUND: Hypoxia is one of the important characteristics of synovial microenvironment in rheumatoid arthritis (RA), and plays an important role in synovial hyperplasia. In terms of cell survival, fibroblast-like synovial cells (FLSs) are relatively affected by hypoxia. In contrast, fibroblast-like synovial cells from patients with RA (RA-FLSs) are particularly resistant to hypoxia-induced cell death. The purpose of this study was to evaluate whether fibroblast-like synovial cells in patients with osteoarthritis (OA-FLSs) and RA-FLSs have the same adaptation to hypoxia. METHODS: CCK-8, flow cytometry and BrdU were used to detect the proliferation of OA-FLSs and RA-FLSs under different oxygen concentrations. Apoptosis was detected by AV/PI, TUNEL and Western blot, mitophagy was observed by electron microscope, laser confocal microscope and Western blot, the state of mitochondria was detected by ROS and mitochondrial membrane potential by flow cytometry, BNIP3 and HIF-1α were detected by Western blot and RT-qPCR. The silencing of BNIP3 was achieved by stealth RNA system technology. RESULTS: After hypoxia, the survival rate of OA-FLSs decreased, while the proliferation activity of RA-FLSs further increased. Hypoxia induced an increase in apoptosis and inhibition of mitophagy in OA-FLSs, but not in RA-FLSs. Hypoxia led to a more lasting adaptive response. RA-FLSs displayed a more significant increase in the expression of genes transcriptionally regulated by HIF-1α. Interestingly, they showed higher BNIP3 expression than OA-FLSs, and showed stronger mitophagy and proliferation activities. BNIP3 siRNA experiment confirmed the potential role of BNIP3 in the survival of RA-FLSs. Inhibition of BNIP3 resulted in the decrease of cell proliferation, mitophagy and the increase of apoptosis. CONCLUSION: In summary, RA-FLSs maintained intracellular redox balance through mitophagy to promote cell survival under hypoxia. The mitophagy of OA-FLSs was too little to maintain the redox balance of mitochondria, resulting in apoptosis. The difference of mitophagy between OA-FLSs and RA-FLSs under hypoxia is mediated by the level of BNIP3 expression.


Assuntos
Artrite Reumatoide , Osteoartrite , Sinoviócitos , Artrite Reumatoide/genética , Proliferação de Células/genética , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Hipóxia/metabolismo , Proteínas de Membrana/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Proteínas Proto-Oncogênicas , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
13.
Vaccine ; 40(32): 4609-4616, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35738970

RESUMO

The mass inoculation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine to induce herd immunity is one of the most effective measures to fight COVID-19. The vaccination of pregnant women cannot only avoid or reduce the probability of infectious diseases, but also offers the most effective and direct protection for neonates by means of passive immunization. However, there is no randomized clinical data to ascertain whether the inactivated vaccination of pregnant women or women of childbearing age can affect conception and the fetus. We found that human angiotensin-converting enzyme 2 (hACE2) mice that were vaccinated with two doses of CoronaVac (an inactivated SARS-CoV-2 vaccine) before and during pregnancy exhibited normal weight changes and reproductive performance indices; the physical development of their offspring was also normal. Following intranasal inoculation with SARS-CoV-2, pregnant mice in the immunization group all survived; reproductive performance indices and the physical development of offspring were all normal. In contrast, mice in the non-immunization group all died before delivery. Analyses showed that inoculation of CoronaVac was safe and did not exert any significant effects on pregnancy, lactation, or the growth of offspring in hACE2 mice. Vaccination effectively protected the pregnant mice against SARS-CoV-2 infection and had no adverse effects on the growth and development of the offspring, thus suggesting that inoculation with an inactivated SARS-CoV-2 vaccine may be an effective strategy to prevent infection in pregnant women.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Lactação , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Gravidez , SARS-CoV-2 , Vacinas de Produtos Inativados
14.
Inflammopharmacology ; 30(3): 1047-1062, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35389123

RESUMO

Rheumatoid arthritis (RA) is a systemic immune disease characterized by joint inflammation and pannus. The nascent pannus contributes to synovial hyperplasia, cartilage, and tissue damage in RA. This study aims to explore the therapeutic effect and potential mechanism of Geniposide (GE) on RA angiogenesis, involving the participation of phosphate and tension homology deleted on chromosome ten (PTEN) and downstream pathways. Clinical manifestations, synovial pathomorphology, microvessel density, and the level of angiogenesis-related factors were used to evaluate the therapeutic effect of GE on adjuvant-induced arthritis (AA) rats. The proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) indicate the degree of angiogenesis in vitro. Lentivirus over-expression of PTEN was employed to elucidate the potential mechanism. The results showed that GE improved the degree of arthritis and angiogenesis in AA rats. The expression of PTEN was decreased significantly in vivo and in vitro, and over-expression of PTEN improved the biological function of HUVECs to inhibit angiogenesis. GE inhibited the proliferation, migration, and tubule formation of HUVECs and plays an anti-angiogenesis role in vitro. Mechanism study showed that PTEN expression was increased and p-PI3K and p-Akt expression was decreased with GE treatment. It suggests that GE up-regulated the expression of PTEN and inhibited the activation of PI3K-Akt signal, which plays a role in inhibiting angiogenesis in RA in vivo and in vitro.


Assuntos
Artrite Experimental , Artrite Reumatoide , Indutores da Angiogênese/farmacologia , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Iridoides , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais
15.
Environ Sci Pollut Res Int ; 29(33): 50742-50754, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35237915

RESUMO

Phosphate-solubilizing bacteria (PSB) can accelerate phytoremediation, especially in those fertilized soils. However, PSB function in oligotrophic growth substrates remains poorly studied. In this study, we isolated lead (Pb)- and cadmium (Cd)-resistant PSB from contaminated sandy soil at an abandoned lubricant plant. The isolated Pantoea sp. PP4 (PP4 hereafter) can produce organic acid and IAA (Indole-3-acetic acid) and dissolve up to 238 mg/L of inorganic phosphate Ca2(PO4)3, exhibiting biosorption capability for Pb and bioprecipitation for Pb and Cd. In the sand pot experiment, inoculation of PP4 increased the accumulation of Pb and Cd in Lolium multiflorum Lam. by 28.9% and 95.5%, respectively, and increased the available phosphorous in oligotrophic river sand by 30.8% (P < 0.05). Meanwhile, the growth of Lolium multiflorum Lam. was also stimulated, resulting in 89.2%, 57.1%, 184.6%, and 28.5% increase in fresh weight, dry weight, root length, and shoot length, respectively. NMDS analysis showed that the bacterial communities in river sand were more clustered after inoculation with PP4. These results indicated that the application of Pantoea sp. PP4 can facilitate the phytoremediation of Pb and Cd in oligotrophic growth substrates, forming a convergent bacterial community. Our findings highlighted the importance of identifying ideal PSB to improve phytoremediation efficiency in oligotrophic environments.


Assuntos
Lolium , Metais Pesados , Pantoea , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Chumbo , Metais Pesados/análise , Fosfatos , Areia , Solo , Poluentes do Solo/análise
16.
Cell Mol Life Sci ; 79(3): 175, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244772

RESUMO

FK506-binding protein 51 (encoded by Fkpb51, also known as Fkbp5) has been associated with stress-related mental illness. To investigate its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assisted morphological analysis revealed that male Fkbp51 knock-out (KO) mice possess more elongated dentate gyrus (DG) but shorter hippocampal height in coronal sections when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls and pharmacological manipulation experiments suggest that this may occur through the regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support a role for FKBP51 in the regulation of microtubule-associated protein expression. Furthermore, Fkbp51 KO hippocampi exhibited decreases in ßIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory mechanism of Parkin by FKBP51 and the significance of their interaction on disease onset. KO has more flattened hippocampus using AI-assisted measurement Both pyramidal cell layer (PCL) of CA and granular cell layer (GCL) of DG distinguishable as two layers: deep cell layer and superficial layer. Distinct MAP2 expression between deep and superficial layer between KO and WT, Higher Parkin expression in KO brain Mechanism of FKBP51 inhibition resulting in Parkin, MAP2, Tau, and Tubulin expression differences between KO and WT mice, and resulting neurite outgrowth differences.


Assuntos
Hipocampo/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Encéfalo/anatomia & histologia , Células Cultivadas , Hipocampo/anatomia & histologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/deficiência , Proteínas de Ligação a Tacrolimo/metabolismo , Tubulina (Proteína)/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Proteínas tau/metabolismo
17.
Phytomedicine ; 100: 154068, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35358930

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an angiogenesis-dependent disease caused by the imbalance of pro- and anti-angiogenic factors. More effective strategies to block synovial angiogenesis in RA should be studied. Geniposide (GE), a natural product isolated from the fruit of Gardenia jasminoides Ellis (GJ), is reported to have anti-inflammatory, anti-angiogenic and other pharmacological effects. However, the underlying mechanism through which GE affects synovial angiogenesis in RA remains unclear. PURPOSE: In this research, we aimed to elucidate the effect and potential mechanisms of GE on angiogenesis in RA. MATERIALS AND METHODS: Synovial angiogenesis in patients with RA and a rat model of adjuvant arthritis (AA) was detected by hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), and western blottiing. The biological functions of vascular endothelial cells (VECs) and sphingosine kinase 1 (SphK1) translocation were checked by CCK-8, EdU, Transwell, tube formation, co-immunoprecipitation assays, and laser scanning confocal microscopy. The effect of the SphK1 gene on angiogenesis was assessed by transfection of SphK1-siRNA in cells and mices. The effect of GE on VEGF-induced angiogenesis was measured by Matrigel plug assay in a mouse model of AA. RESULTS: GE effectively inhibited synovial angiogenesis and alleviated the disease process. SphK1, as a new regulatory molecule, has a potentially important relationship in regulating VEGF/VEGFR2 and S1P/S1PR1 signals. SphK1 translocation was activated via the VEGFR2/PKC/ERK1/2 pathway and was closely linked to the biological function of VECs. GE significantly reduced SphK1 translocation, thereby ameliorating the abnormal biological function of VECs. Furthermore, after transfection of SphK1 siRNA in VECs and C57BL/6 mice, silencing SphK1 caused effectively attenuation of VEGF-induced VEC biological functions and angiogenesis. In vivo, the Matrigel plug experiment indicated that GE significantly inhibited pericyte coverage, basement membrane formation, vascular permeability, and fibrinogen deposition. CONCLUSIONS: Our findings suggest that GE inhibited VEGF-induced VEC biological functions and angiogenesis by reducing SphK1 translocation. Generally, studies have revealed that GE down-regulated VEGFR2/PKC/ERK1/2-mediated SphK1 translocation and inhibited S1P/S1PR1 signaling activation, thereby alleviating VEGF-stimulated angiogenesis. The above evidences indicated that angiogenesis inhibition may provide a new direction for RA treatment.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Iridoides , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , RNA Interferente Pequeno/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Int J Gen Med ; 15: 325-342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035230

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a commonly occurring tumor. Through a deeper understanding of the immune regulatory mechanisms in the tumor microenvironment, immunotherapy may serve as a potential treatment for cancer patients. This study aimed at identifying the survival-related immune cells and hub genes, which could be potential targets for immunotherapy in ccRCC. METHODS: The gene expression profiles and clinical data of ccRCC patients were extracted from UCSC Xena and Gene Expression Omnibus (GEO) databases. Kaplan-Meier (KM) survival and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses were utilized to select the survival-related tumor-infiltrating immune cells. Multivariate Cox regression was utilized to develop a signature based on the tumor-infiltrating immune cells (TIICs). Based on the signature, the risk score was calculated, following which the samples were divided into high-risk and low-risk groups. Differentially expressed genes (DEGs) between the two risk groups were identified. Functional enrichment analysis was performed and cytoHubba plug-in of Cytoscape was used to identify the hub genes. Multiple datasets were utilized to validate these hub genes, including the Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, and the Human Protein Atlas (HPA), and the GEO datasets. Finally, a correlation analysis was performed to evaluate the relationship between the hub genes and TIICs. RESULTS: Four immune survival-related cells, including T cell CD4 memory-activated, T cell regulatory (Tregs), eosinophils, and mast cell resting were identified. Nine immune-specific hub genes were identified, which included APOE, CASR, CTLA4, CXCL8, EGF, F2, KNG1, MMP9, and IL6. Furthermore, these hub genes were significantly correlated with clinical traits and closely associated with some TIICs. CONCLUSION: A total of four survival-related immune cell types and nine hub genes were found to be closely associated with ccRCC. These findings may have implications for the development of novel potential immunotherapeutic targets for ccRCC.

19.
Med Oncol ; 39(4): 41, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35092501

RESUMO

The tumor immune microenvironment (TIME) and N6-methyladenosine (m6A) are related to the progression of several types of cancer. Nevertheless, the impact of m6A on the TIME of clear cell renal cell carcinoma (ccRCC) remains unclear. This study used an unsupervised clustering algorithm to divide the samples into distinct subgroups. The single sample gene set enrichment analysis (ssGSEA) algorithm to estimate the TIME. The correlation between m6A regulators and immune cells in different subgroups was calculated using Spearman analysis. At last, the relationship between IGF2BP2 and HMGA2 was validated in several datasets, including TCGA-KIRC, GEO, and HPA datasets. We found that m6A regulators were differently expressed in several clinical groups. Based on the expression of m6A regulators, we divided the samples into three subgroups. Then, the survival analysis for these three subgroups showed that the cluster 2 subgroup had poor overall survival (OS). Further, we found that IGF2BP2 and IGF2BP3 were essential components in the cluster 2 subgroup using the principal component analysis (PCA) algorithm. In addition, the expression of these two genes was significantly correlated with survival time. At last, we found that HMGA2 was significantly correlated with IGF2BP2 in several datasets, which indicated that HMGA2 is an essential role in affecting IGF2BP2 regulating the TIME. There is a close correlation between m6A regulators and TIME. Moreover, IGF2BP2 is related to the progression of ccRCC and plays an essential role in affecting the TIME.


Assuntos
Adenosina/análogos & derivados , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Microambiente Tumoral/genética , Adenosina/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Proteína HMGA2/genética , Humanos , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Prognóstico , Proteínas de Ligação a RNA/genética , Análise de Sobrevida , Transcriptoma , Microambiente Tumoral/imunologia
20.
Signal Transduct Target Ther ; 7(1): 29, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091528

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted on mink farms between minks and humans in many countries. However, the systemic pathological features of SARS-CoV-2-infected minks are mostly unknown. Here, we demonstrated that minks were largely permissive to SARS-CoV-2, characterized by severe and diffuse alveolar damage, and lasted at least 14 days post inoculation (dpi). We first reported that infected minks displayed multiple organ-system lesions accompanied by an increased inflammatory response and widespread viral distribution in the cardiovascular, hepatobiliary, urinary, endocrine, digestive, and immune systems. The viral protein partially co-localized with activated Mac-2+ macrophages throughout the body. Moreover, we first found that the alterations in lipids and metabolites were correlated with the histological lesions in infected minks, especially at 6 dpi, and were similar to that of patients with severe and fatal COVID-19. Particularly, altered metabolic pathways, abnormal digestion, and absorption of vitamins, lipids, cholesterol, steroids, amino acids, and proteins, consistent with hepatic dysfunction, highlight metabolic and immune dysregulation. Enriched kynurenine in infected minks contributed to significant activation of the kynurenine pathway and was related to macrophage activation. Melatonin, which has significant anti-inflammatory and immunomodulating effects, was significantly downregulated at 6 dpi and displayed potential as a targeted medicine. Our data first illustrate systematic analyses of infected minks to recapitulate those observations in severe and fetal COVID-19 patients, delineating a useful animal model to mimic SARS-CoV-2-induced systematic and severe pathophysiological features and provide a reliable tool for the development of effective and targeted treatment strategies, vaccine research, and potential biomarkers.


Assuntos
COVID-19/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Metaboloma , Vison/virologia , SARS-CoV-2/metabolismo , Aminoácidos/metabolismo , Animais , Antivirais/farmacologia , COVID-19/genética , COVID-19/patologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Melatonina/metabolismo , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular/métodos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Esteróis/metabolismo , Virulência , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...