Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Endocrinol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954845

RESUMO

Irisin is a recently discovered myokine that facilitates the browning of white adipose tissue, increases glucose uptake in skeletal muscle, and influences metabolic processes in the liver. However, its potential effects on amino acid absorption remained largely unexplored. This study aimed to elucidate the role of irisin in modulating amino acid uptake and delineate the underlying molecular mechanisms involved. To this end, juvenile tilapia were administered intraperitoneal irisin injections at 100 ng/g body weight over eight weeks. Evaluation of various physiological parameters revealed that irisin supplementation significantly improved the specific growth rate and feed conversion efficiency while reducing feed consumption. Muscle tissue analysis revealed that irisin significantly modified the proximate composition by increasing protein content and reducing lipid levels. It also significantly raised the levels of both essential and non-essential amino acids in the muscle. Histological analysis demonstrated that irisin stimulated muscle growth through hyperplasia rather than hypertrophy, corroborated by upregulated IGF-1 mRNA and downregulated myostatin mRNA expression. Mechanistic studies in cultured tilapia muscle cells elucidated that irisin activated integrin receptors on muscle cells, which subsequently engaged IGF-1/IGF-1R signaling. Downstream of IGF-1R activation, irisin simultaneously stimulates the ERK1/2 and PI3K/mTORC2/Akt pathways. The convergence of these pathways upregulates L-type amino acid transporter 1 expression, thereby augmenting amino acid uptake into muscle cells. In summary, irisin supplementation in tilapia leads to improved muscle growth, predominantly via hyperplasia and augmented amino acid assimilation, governed by intricate cellular signaling pathways. These findings provide valuable aquaculture applications and novel insights into muscle development.

2.
Biochem Pharmacol ; 226: 116379, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908531

RESUMO

Sepsis is a widespread and life-threatening disease characterised by infection-triggered immune hyperactivation and cytokine storms, culminating in tissue damage and multiple organ dysfunction syndrome. BMAL1 is a pivotal transcription factor in the circadian clock that plays a crucial role in maintaining immune homeostasis. BMAL1 dysregulation has been implicated in inflammatory diseases and immunodeficiency. However, the mechanisms underlying BMAL1 disruption in sepsis-induced acute lung injury (ALI) remain poorly understood. In vitro, we used THP1 and mouse peritoneal macrophages to elucidate the potential mechanism of BMAL1 function in sepsis. In vivo, an endotoxemia model was used to investigate the effect of BMAL1 on sepsis and the therapeutic role of targeting CXCR2. We showed that BMAL1 significantly affected the regulation of innate immunity in sepsis-induced ALI. BMAL1 deficiency in the macrophages exacerbated systemic inflammation and sepsis-induced ALI. Mechanistically, BMAL1 acted as a transcriptional suppressor and regulated the expression of CXCL2. BMAL1 deficiency in macrophages upregulated CXCL2 expression, increasing the recruitment of polymorphonuclear neutrophils and the formation of neutrophil extracellular traps (NETs) by binding to the chemokine receptor CXCR2, thereby intensifying lung injury in a sepsis model. Furthermore, a selective inhibitor of CXCR2, SB225002, exerted promising therapeutic effects by markedly reducing neutrophil infiltration and NETs formation and alleviating lung injury. Importantly, CXCR2 blockade mitigated multiple organ dysfunction. Collectively, these findings suggest that BMAL1 controls the CXCL2/CXCR2 pathway, and the therapeutic efficacy of targeting CXCR2 in sepsis has been validated, presenting BMAL1 as a potential therapeutic target for lethal infections.

3.
Nat Genet ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834904

RESUMO

Unlike megabats, which rely on well-developed vision, microbats use ultrasonic echolocation to navigate and locate prey. To study ultrasound perception, here we compared the auditory cortices of microbats and megabats by constructing reference genomes and single-nucleus atlases for four species. We found that parvalbumin (PV)+ neurons exhibited evident cross-species differences and could respond to ultrasound signals, whereas their silencing severely affected ultrasound perception in the mouse auditory cortex. Moreover, megabat PV+ neurons expressed low levels of complexins (CPLX1-CPLX4), which can facilitate neurotransmitter release, while microbat PV+ neurons highly expressed CPLX1, which improves neurotransmission efficiency. Further perturbation of Cplx1 in PV+ neurons impaired ultrasound perception in the mouse auditory cortex. In addition, CPLX1 functioned in other parts of the auditory pathway in microbats but not megabats and exhibited convergent evolution between echolocating microbats and whales. Altogether, we conclude that CPLX1 expression throughout the entire auditory pathway can enhance mammalian ultrasound neurotransmission.

4.
Stroke ; 55(6): 1650-1659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38738428

RESUMO

BACKGROUND: Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS: Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS: Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS: Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Junções Íntimas , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/genética , Morte Celular , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Junções Íntimas/metabolismo
5.
Am J Cancer Res ; 14(3): 1121-1138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590396

RESUMO

Autophagy, a highly regulated lysosome-dependent catabolic pathway, has garnered increasing attention because of its role in leukemia resistance. Among the S100 family of small calcium-binding proteins, S100P is differentially expressed in various tumor cell lines, thereby influencing tumor occurrence, invasion, metastasis, and drug resistance. However, the relationship between S100P and autophagy in determining chemosensitivity in leukemia cells remains unexplored. Our investigation revealed a negative correlation between S100P expression and the clinical status in childhood leukemia, with its presence observed in HL-60 and Jurkat cell lines. Suppression of S100P expression resulted in increased cell proliferation and decreased chemosensitivity in leukemia cells, whereas enhancement of S100P expression inhibited cell proliferation and increased chemosensitivity. Additionally, S100P knockdown drastically promoted autophagy, which was subsequently suppressed by S100P upregulation. Moreover, the p53/AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway was found to be functionally associated with S100P-mediated autophagy. Knockdown of S100P expression led to a decrease in p53 and p-mTOR levels and an increase in p-AMPK expression, ultimately promoting autophagy. This effect was reversed by administration of Tenovin-6 (a p53 activator) and Compound C (an AMPK inhibitor). The findings of our in vivo experiments provide additional evidence supporting the aforementioned data. Specifically, S100P inhibition significantly enhanced the growth of HL-60 tumor xenografts and increased the expression of microtubule-associated protein 1 light chain 3 and p-AMPK in nude mice. Consequently, it can be concluded that S100P plays a regulatory role in the chemosensitivity of leukemia cells by modulating the p53/AMPK/mTOR pathway, which controls autophagy in leukemia cells.

6.
Int J Clin Pract ; 2024: 5113990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322112

RESUMO

Objective: We conducted a meticulous bioinformatics analysis leveraging expression data of 226 PANRGs obtained from previous studies, as well as clinical data from AML patients derived from the HOVON database. Methods: Through meticulous data analysis and manipulation, we were able to categorize AML cases into two distinct PANRG clusters and subsequently identify differentially expressed genes (PRDEGs) with prognostic significance. Furthermore, we organized the patient data into two corresponding gene clusters, allowing us to investigate the intricate relationship between the risk score, patient prognosis, and the immune landscape. Results: Our findings disclosed significant associations between the identified PANRGs, gene clusters, patient survival, immune system, and cancer-related biological processes and pathways. Importantly, we successfully constructed a prognostic signature comprising nineteen genes, enabling the stratification of patients into high-risk and low-risk groups based on individually calculated risk scores. Furthermore, we developed a robust and practical nomogram model, integrating the risk score and other pertinent clinical features, to facilitate accurate patient survival prediction. Our comprehensive analysis demonstrated that the high-risk group exhibited notably worse prognosis, with the risk score proving to be significantly correlated with infiltration of most immune cells. The qRT-PCR results revealed significant differential expression patterns of LGR5 and VSIG4 in normal and human leukemia cell lines (HL-60 and MV-4-11). Conclusions: Our findings underscore the potential utility of PANoptosis-based molecular clustering and prognostic signatures as predictive tools for assessing patient survival in AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Imunoterapia , Aprendizado de Máquina , Análise de Dados , Bases de Dados Factuais , Prognóstico
7.
ACS Appl Mater Interfaces ; 16(5): 6623-6631, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38261021

RESUMO

The development of aqueous zinc-ion batteries (AZIBs) is hindered by dendrites and side reactions, such as interfacial byproducts, corrosion, and hydrogen evolution. The construction of an artificial interface protective layer on the surface of the zinc anode has been extensively researched due to its strong operability and potential for large-scale application. In this study, we have designed an organic hydrophobic hybrid inorganic intercalation composite coating to achieve stable Zn2+ plating/stripping. The hydrophobic poly(vinylidene fluoride) (PVDF) effectively prevents direct contact between free water and the zinc anode, thereby mitigating the risk of dendrite formation. Simultaneously, the inorganic layer of vanadium phosphate (VOPO4·2H2O) after the insertion of polyaniline (PA) establishes a robust ion channel for facilitating rapid transport of Zn2+, thus promoting uniform electric field distribution and reducing concentration polarization. As a result, the performance of the modified composite PVDF/PA-VOP@Zn anode exhibited significant enhancement compared with that of the bare zinc anode. The assembled symmetric cell exhibits an exceptionally prolonged lifespan of 3070 h at a current density of 1 mA cm-2, while the full battery employing KVO as the cathode demonstrates a remarkable capability to undergo 2000 cycles at 5 A g-1 with a capacity retention rate of 78.2%. This study offers valuable insights into the anodic modification strategy for AZIBs.

8.
Fish Shellfish Immunol ; 144: 109245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000652

RESUMO

Irisin, a secreted myokine generated by fibronectin type III domain-containing protein 5, has recently shown the potential to alleviate inflammation. Cholecystokinin-octapeptide (CCK-8) is closely associated with the inflammatory factor TNF-α, a central cytokine in inflammatory reactions. However, the interactions between irisin and CCK-8 in regulating TNF-α production and the underlying mechanism have not yet been elucidated. In the present study, irisin treatment inhibited the basal and the CCK-8-induced TNF-α production in vivo. Additionally, neutralizing circulating irisin using an irisin antiserum significantly augmented the CCK-8-induced stimulation of TNF-α levels. Moreover, the incubation of head kidney cells with irisin or CCK-8 has opposite effects on TNF-α secretion. Notably, irisin treatment inhibited basal and CCK-8-stimulated TNF-α release and gene transcription in head kidney cells. Mechanistically, the inhibitory actions of irisin on basal and CCK-8-induced TNF-α production could be negated by co-administered with the selective integrin αVß5 inhibitor cilengitide. In addition, the inhibitory effect of irisin on basal and CCK-8-triggered TNF-α production could be abolished by the inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, irisin impeded CCK-8-induced phosphorylation and degradation of IκBα, simultaneously inhibiting NF-κB phosphorylation, preventing its translocation into the nucleus, and suppressing its DNA-binding activity induced by CCK-8. Collectively, these results suggest that the inhibitory effect of irisin on TNF-α production caused by CCK-8 is mediated via the integrin αVß5-NF-κB signaling pathways in tilapia.


Assuntos
Ciclídeos , NF-kappa B , Animais , NF-kappa B/metabolismo , Sincalida/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia , Fibronectinas/genética , Ciclídeos/metabolismo , Transdução de Sinais , Inflamação/induzido quimicamente
9.
Small ; 20(6): e2305766, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771178

RESUMO

Although the research on aqueous batteries employing metal as the anode is still mainly focused on the aqueous zinc-ion battery, aqueous iron-ion batteries are considered as promising aqueous batteries owing to the lower cost, higher specific capacity, and better stability. However, the sluggish Fe2+ (de)intercalation leads to unsatisfactory specific capacity and poor electrochemical stability, which makes it difficult to find cathode materials with excellent electrochemical properties. Herein, phenylamine (PA)-intercalated VOPO4 materials with expanded interlayer spacing are synthesized and applied successfully in aqueous iron-ion batteries. Owing to enough diffusion space from the expanded interlayer, which can boost fast Fe2+ diffusion, the aqueous iron-ion battery shows a high specific capacity of 170 mAh g-1 at 0.2 A g-1 , excellent rate performance, and cycle stability (96.2% capacity retention after 2200 cycles). This work provides a new direction for cathode material design in the development of aqueous iron-ion batteries.

10.
iScience ; 26(12): 108393, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047088

RESUMO

Ferroptosis is a type of regulated cell death characterized by lipid peroxidation and subsequent damage to the plasma membrane. Here, we report a ferroptosis resistance mechanism involving the upregulation of TXNDC12, a thioredoxin domain-containing protein located in the endoplasmic reticulum. The inducible expression of TXNDC12 during ferroptosis in leukemia cells is inhibited by the knockdown of the transcription factor ATF4, rather than NFE2L2. Mechanistically, TXNDC12 acts to inhibit lipid peroxidation without affecting iron accumulation during ferroptosis. When TXNDC12 is overexpressed, it restores the sensitivity of ATF4-knockdown cells to ferroptosis. Moreover, TXNDC12 plays a GPX4-independent role in inhibiting lipid peroxidation. The absence of TXNDC12 enhances the tumor-suppressive effects of ferroptosis induction in both cell culture and animal models. Collectively, these findings demonstrate an endoplasmic reticulum-based anti-ferroptosis pathway in cancer cells with potential translational applications.

11.
Small ; : e2309527, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072627

RESUMO

VO2 material, as a promising intercalation host, is widely investigated not only in aqueous lithium-ion batteries, but also in aqueous zinc-ion batteries (AZIBs) owing to its stable tunnel-like framework and multivalence of vanadium. Different from lithium-ion storage, VO2 can provide higher capacity when storing zinc ions, even exceeding its theoretical capacity (323 mAh g-1 ), but the specific reason for this unconventional performance in AZIBs is still unclear. The present study proposes a catalytic oxygen evolution reaction (OER) coupled with an interface oxidation mechanism of VO2 during the initial charging to a high voltage. This coupling induces a phase transformation of VO2 into a high oxidation state of V5 O12 ∙6H2 O, enabling a nearly two-electron reaction and providing additional zinc storage sites to achieve super-theoretical capacity. Furthermore, it is demonstrated that these vanadium oxide cathodes (V2 O3 , VO2 , and V2 O5 ) will all undergo phase change after the first charge or short cycle. Notably, water molecules participate in the final formation of layered vanadium-based hydrate, highlighting their crucial role as "pillars" for stabilizing the structure. This work significantly enhances the understanding of vanadium-based oxide cathodes.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(10): 1059-1065, 2023 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-37905764

RESUMO

OBJECTIVES: To investigate the potential relationship between age and Streptococcus pneumoniae vaccination coverage in kindergarten children, and to provide a basis for guiding vaccination and developing new protein vaccines. METHODS: The stratified cluster random sampling method was used to select 1 830 healthy children from six kindergartens in Shunde District, Foshan City, China, and nasopharyngeal swabs were collected for the isolation and identification of Streptococcus pneumoniae. The logistic regression model based on restricted cubic spline was used to analyze the dose-response relationship between age and Streptococcus pneumoniae vaccination coverage. RESULTS: The rate of nasal Streptococcus pneumoniae carriage was 22.46% (411/1 830) among the kindergarten children, with the predominant serotypes of 6B, 19F, 15A, 23A, 34, and 23F. The coverage rates of 10-valent pneumococcal conjugate vaccine (PCV10) and 13-valent pneumococcal conjugate vaccine (PCV13) were 53.0% and 57.9%, respectively, and there was a significant non-linear dose-response relationship between age and the coverage rates of PCV10 and PCV13 (P<0.05), with a higher coverage rate of PCV10 (88.0%) and PCV13 (91.1%) in the children aged 2 years. There was a significant non-linear dose-response relationship between age and the coverage rates of pilus islet 1 (PI-1) and pilus islet 2 (PI-2) (P<0.05), with a lower vaccination coverage rate for PI-1 (37.7%) and PI-2 (16.1%). The coverage rates of PI-1 (13.0%-58.5%) and PI-2 (6.0%-29.4%) were lower in all age groups. The virulence genes lytA (99.5%) and ply (99.0%) associated with candidate protein vaccines showed higher vaccination coverage rates. CONCLUSIONS: There is a significant non-linear dose-response relationship between the age of kindergarten children and the coverage rates of PCV10 and PCV13 serotypes, and kindergarten children aged 2 years have a relatively high coverage rate of PCV. The high prevalence of the virulence genes lytA and ply shows that they are expected to become candidate virulence factors for the development of a new generation of recombinant protein vaccines.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Criança , Lactente , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/epidemiologia , Cobertura Vacinal , Vacinas Pneumocócicas , Sorogrupo , Vacinação , Nasofaringe , Portador Sadio/epidemiologia
13.
Aging Cell ; 22(11): e13982, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37681451

RESUMO

Although immunosenescence may result in increased morbidity and mortality, many mammals have evolved effective immune coping strategies to extend their lifespans. Thus, the immune systems of long-lived mammals present unique models to study healthy longevity. To identify the molecular clues of anti-immunosenescence, we first built high-quality reference genome for a long-lived myotis bat, and then compared three long-lived mammals (i.e., bat, naked mole rat, and human) versus the short-lived mammal, mouse, in splenic immune cells at single-cell resolution. A close relationship between B:T cell ratio and immunosenescence was detected, as B:T cell ratio was much higher in mouse than long-lived mammals and significantly increased during aging. Importantly, we identified several iron-related genes that could resist immunosenescence changes, especially the iron chaperon, PCBP1, which was upregulated in long-lived mammals but dramatically downregulated during aging in all splenic immune cell types. Supportively, immune cells of mouse spleens contained more free iron than those of bat spleens, suggesting higher level of ROS-induced damage in mouse. PCBP1 downregulation during aging was also detected in hepatic but not pulmonary immune cells, which is consistent with the crucial roles of spleen and liver in organismal iron recycling. Furthermore, PCBP1 perturbation in immune cell lines would result in cellular iron dyshomeostasis and senescence. Finally, we identified two transcription factors that could regulate PCBP1 during aging. Together, our findings highlight the importance of iron homeostasis in splenic anti-immunosenescence, and provide unique insight for improving human healthspan.


Assuntos
Quirópteros , Imunossenescência , Humanos , Animais , Camundongos , Quirópteros/genética , Baço/metabolismo , Envelhecimento , Mamíferos/fisiologia , Homeostase
14.
J Transl Med ; 21(1): 606, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679782

RESUMO

BACKGROUND: The identifying of B-cell lymphoma 2 (Bcl-2) as a therapeutic target has led to a paradigm shift in acute myeloid leukemia (AML) treatment. Pyroptosis is a novel antitumor therapeutic mechanism due to its cytotoxic and immunogenic effects. The combination of venetoclax and hypomethylating agents (HMAs) has been shown to lead to durable responses and significantly improve prognosis in patients with AML. However, our understanding of the mechanisms underlying this combinatorial activity is evolving. METHODS: We investigated whether the Bcl-2 inhibitor venetoclax induces AML cell pyroptosis and identified pyroptosis effector proteins. Via using western blotting, immunoprecipitation, RNA interference, CCK8 assays, and LDH assays, we explored the mechanism underlying the pyroptotic effect. The relationship between the expression of the pyroptosis effector protein GSDME and AML prognosis was investigated. The effect of GSDME demethylation combined with venetoclax treatment on pyroptosis was investigated and confirmed in mouse models and clinical samples. RESULTS: Venetoclax induces pyroptosis that is mediated by caspase-3-dependent GSDME cleavage. Mechanistically, venetoclax upregulates caspase-3 and GSDME cleavage by activating the intrinsic apoptotic pathway. GSDME is downregulated in AML by promoter methylation, and low GSDME expression is significantly associated with poor prognosis, based on public databases and patient sample analysis. In vivo and in vitro experiments showed that GSDME overexpression or HMAs-mediated restoration of GSDME expression significantly increased venetoclax-induced pyroptosis in AML. CONCLUSION: GSDME-mediated pyroptosis may be a novel aspect of the antileukemic effect of Bcl-2 inhibitors. This finding offers new insights into potential biomarkers and therapeutic strategies, identifying an important mechanism explaining the clinical activity of venetoclax and HMAs in AML.


Assuntos
Bioensaio , Piroptose , Animais , Camundongos , Caspase 3 , Proteínas Proto-Oncogênicas c-bcl-2
16.
Protein Cell ; 14(6): 433-447, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37402315

RESUMO

Molecular knowledge of human gastric corpus epithelium remains incomplete. Here, by integrated analyses using single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) techniques, we uncovered the spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium. Specifically, we identified a stem/progenitor cell population in the isthmus of human gastric corpus, where EGF and WNT signaling pathways were activated. Meanwhile, LGR4, but not LGR5, was responsible for the activation of WNT signaling pathway. Importantly, FABP5 and NME1 were identified and validated as crucial for both normal gastric stem/progenitor cells and gastric cancer cells. Finally, we explored the epigenetic regulation of critical genes for gastric corpus epithelium at chromatin state level, and identified several important cell-type-specific transcription factors. In summary, our work provides novel insights to systematically understand the cellular diversity and homeostasis of human gastric corpus epithelium in vivo.


Assuntos
Epigênese Genética , Mucosa Gástrica , Humanos , Mucosa Gástrica/metabolismo , Cromatina/metabolismo , Células-Tronco , Epitélio/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo
17.
Chem Commun (Camb) ; 59(55): 8576-8579, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37340786

RESUMO

The research on aqueous iron-ion batteries (AIIBs) is still in its early stages and highly limited by the lack of suitable cathode materials. In this study, we propose using tunnel-like VO2 as a cathode material, which delivers a high capacity of 198 mA h g-1 at 0.2 A g-1. Besides, the AIIB exhibits appreciable cycling performance, retaining 78.9% of its initial capacity after 200 cycles. The unique structure of VO2 and the multiple valence states of vanadium in VO2 enable the reversible storage of Fe2+ during cycling. This work presents a new choice for the cathode and considerable development prospects in AIIBs.


Assuntos
Fontes de Energia Elétrica , Ferro , Eletrodos , Íons , Vanádio
18.
Food Sci Nutr ; 11(5): 2130-2140, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181298

RESUMO

P. ginseng (Panax ginseng C. A. Meyer) is a well-known traditional medicine that has been used for thousands of years to treat diseases. However, "ginseng abuse syndrome" (GAS) often occurs due to an inappropriate use such as high-dose or long-term usage of ginseng; information about what causes GAS and how GAS occurs is still lacking. In this study, the critical components that potentially caused GAS were screened through a step-by-step separation strategy, the pro-inflammatory effects of different extracts on messenger RNA (mRNA) or protein expression levels were evaluated in RAW 264.7 macrophages through quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot, respectively. It was found that high-molecular water-soluble substances (HWSS) significantly increased the expression of cytokines (cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and interleukin 6 (IL-6)) and cyclooxygenase 2 (COX-2) protein; gel filtration chromatography fraction 1 (GFC-F1) further purified from HWSS showed prominent pro-inflammatory effects by increasing the transcription of cytokines (COX-2, iNOS, tumor necrosis factor alpha (TNF-α), and interleukin 1ß (IL-1ß)) as well as the expression of COX-2 and iNOS protein. Moreover, GFC-F1 activated nuclear factor-kappa B (NF-кB) (p65 and inhibitor of nuclear factor-kappa B alpha (IκB-α)) and the p38/MAPK (mitogen-activated protein kinase) signaling pathways. On the other hand, the inhibitor of the NF-κB pathway (pyrrolidine dithiocarbamate (PDTC)) reduced GFC-F1-induced nitric oxide (NO) production, while the inhibitors of the MAPK pathways did not. Taken together, GFC-F1 is the potential composition that caused GAS through the production of inflammatory cytokines by activating the NF-кB pathway.

19.
Comput Struct Biotechnol J ; 21: 1606-1620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874158

RESUMO

Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic signatures at physiological concentrations in human colorectal adenocarcinoma cells. We observed significantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial transport and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer.

20.
Am J Cancer Res ; 13(2): 436-451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895972

RESUMO

Pyroptosis, a newly discovered mode of programmed cell death (PCD), is important in the regulation of cancer development. High mobility group box 1 (HMGB1) is a non-histone nuclear protein that is closely related to tumor development and chemotherapy resistance. However, whether endogenous HMGB1 regulates pyroptosis in neuroblastoma remains unknown. Here, we showed that HMGB1 showed ubiquitous higher expression in SH-SY5Y cells and clinical tumors, and was positively correlated with the risk factors of patients with neuroblastoma. Knockdown of GSDME or pharmacological inhibition of caspase-3 blocked pyroptosis and cytosolic translocation of HMGB1. Moreover, knockdown of HMGB1 inhibited cisplatin (DDP) or etoposide (VP16)-induced pyroptosis by decreasing GSDME-NT and cleaved caspase-3 expression, resulting in cell blebbing and LDH release. Knockdown of HMGB1 expression increased the sensitivity of SH-SY5Y cells to chemotherapy and switched pyroptosis to apoptosis. Furthermore, the ROS/ERK1/2/caspase-3/GSDME pathway was found to be functionally connected with DDP or VP16-induced pyroptosis. Hydrogen peroxide (H2O2, a ROS agonist) and EGF (an ERK agonist) promoted the cleavage of GSDME and caspase-3 in DDP or VP16 treatment cells, both of which were inhibited by HMGB1 knockdown. Importantly, these data were further supported by the in vivo experiment. Our study suggests that HMGB1 is a novel regulator of pyroptosis via the ROS/ERK1/2/caspase-3/GSDME pathway and a potential drug target for therapeutic interventions in neuroblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...