RESUMO
The viable but non-culturable (VBNC) state is a survival strategy adopted by microorganisms in response to unfavorable conditions in the environment. VBNC cells are unable to form colonies but still maintain a low level of activity, posing a potential threat to food safety and public health. Therefore, the development of effective strategies to prevent the formation and resuscitation of VBNC cells of microorganisms is a key challenge in food science and microbiology research. However, current research on VBNC cells has primarily focused on bacteria, with relatively limited reports on fungi. This paper provides a comprehensive and systematic review of yeast in the VBNC state, discussing various factors that induce and facilitate resuscitation, along with detection methods and formation and recovery mechanisms. A comprehensive understanding of the induction and resuscitation of yeast in the VBNC state and exploration of its molecular mechanism hold significant implications for food safety and public health. It is imperative to enhance our comprehension of the underlying mechanisms and contributory factors pertaining to VBNC yeast, thereby facilitating the efficient management of the food fermentation process and ensuring the integrity of food quality and safety.
Assuntos
Microbiologia de Alimentos , Leveduras , Fermentação , Indústria Alimentícia , Inocuidade dos Alimentos , Viabilidade Microbiana , Leveduras/crescimento & desenvolvimentoRESUMO
Parkinson's disease (PD) is a prevalent type of neurodegenerative disorder. AVE0991, a non-peptide analogue of Ang-(1-7), by which the progression of PD has been discovered to be ameliorated, but the specific mechanism whereby AVE0991 modulates the progression of PD re-mains unclear. The mice overexpressing human α-syn (A53T) were established to simulate PD pathology, and we also constructed an in vitro model of mouse dopaminergic neurons overexpressing hα-syn (A53T). The [18F] FDG-PET/CT method was employed to assess FDG uptake in human α-syn (A53T) overexpressing mice. Levels of lnc HOTAIRM1 and miR-223-3p were detected via qRT-PCR. Flow cytometry was deployed to assay cell apoptosis. Here, we found that AVE0991 improved behaviour disorders and decreased α-syn expression in the substantia nigra of mice with Parkinson's disease. AVE0991 inhibited the apoptosis of dopaminergic neurons overexpressing hα-syn (A53T) via lncRNA HOTAIRM1. MiR-223-3p binds to HOTAIRM1 as a ceRNA and directly targets α-syn. Moreover, miR-223-3p level in peripheral blood was found negatively correlated with the α-syn. Our present study shows that the angiotensin-(1-7) analogue AVE0991 targeted at the HOTAIRM1/miR-223-3p axis to degrade α-synuclein in PD mice, and showed neuroprotection in vitro.
Assuntos
Neurônios Dopaminérgicos , MicroRNAs , Doença de Parkinson , RNA Longo não Codificante , alfa-Sinucleína , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Camundongos , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Apoptose , Modelos Animais de Doenças , Masculino , Fragmentos de Peptídeos/metabolismo , Substância Negra/metabolismo , Substância Negra/patologiaRESUMO
Fat mass and obesity-associated protein (FTO) is a demethylase and has recently been found to have a protective effect in acute ischemic stroke (AIS), but the underlying mechanism is unclear to a large extent. New studies have found that the expression of certain miRNAs may be affected by N6-methyladenosine (m6A) levels. Here, using high-throughput sequencing and quantitative polymerase chain reaction, we found miR-320-3p was significantly up-regulated in AIS patients. miR-320-3p aggravated the neurobehavioral manifestation, infarct volume and histopathology of middle cerebral artery occlusion/reperfusion model mice. Mechanically, miR-320-3p binds to the 3' untranslated region of solute carrier family 7 member 11 (SLC7A11) mRNA, promoting oxidative stress and ferroptosis induced by oxygen-glucose deprivation/reoxygenation in neurons. FTO inhibited the m6A methylation of the primary transcript pri-miR-320 and the maturation of miR-320-3p, thus having a protective effect on cerebral ischemia/reperfusion injury after AIS. Clinically, we also confirmed the down-regulation of FTO and SLC7A11 mRNA in the peripheral blood of AIS patients and their correlation with the expression of miR-320-3p. Our study found that FTO inhibits ferroptosis through miR-320-3p/SLC7A11 axis in an m6A-dependent manner, and thus has a protective effect on cerebral ischemic reperfusion injury. Our results provided a promising therapeutic target of cerebral ischemia/reperfusion injury after AIS.
RESUMO
Purpose: Vascular dementia (VaD) is the second most common dementia in the world. An increasing number of studies have demonstrated the important role of long non-coding RNAs (lncRNAs) in VaD. Our previous investigation demonstrated that Trimethylamine-N-oxide (TMAO) exacerbates cognitive impairment and neuropathological alterations in VaD rats. Thus, we hypothesized that TMAO could play an injury role in VaD by regulating lncRNAs. Materials and Methods: The rats using the bilateral common carotid artery (2VO) model were administered TMAO (120 mg/kg) for 8 consecutive weeks, 4 weeks preoperatively and 4 weeks postoperatively. High-throughput sequencing was conducted to investigate the effects of TMAO treatment on lncRNA expression in rat hippocampus and bioinformatics analysis was performed to identify potential downstream targets. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the levels of lncRNA fetal-lethal noncoding developmental regulatory RNA (Fendrr), miR-145-5p, and paxillin (PXN). Learning and spatial memory capacities were measured, as well as inflammatory factors. Nissl staining was used to observe neuronal injury in the CA1 area of the hippocampus. Furthermore, we used the Fendrr loss-of-function assay, miR-145-5p gain-of-function assays and PXN loss-of-function assay to explore the mechanisms by which TMAO acts on VaD. Results: TMAO administration upregulated lncRNA Fendrr expression in the rat hippocampus, while the damaging effects of TMAO were counteracted after knockdown of Fendrr. Fendrr exhibits highly expressed in 2VO rats and sponged miR-145-5p, which targets PXN. Silencing of Fendrr or PXN, or promotion of miR-145-5p improved neurological function injury, reduced neuronal damage, as well as repressed inflammation response. Inhibition of miR-145-5p abrogated up Fendrr knockdown mediated influence on 2VO rats. Conclusion: The results of this study indicated that TMAO inhibits the miR-145-5p/PXN axis by increasing the Fendrr expression, thus exacerbating the development of VaD.
RESUMO
Parkinson's disease (PD) is the second most common neurodegenerative disorder, whose characteristic pathology involves progressive deficiency of dopaminergic neurons and generation of Lewy bodies (LBs). Aggregated and misfolded α-synuclein (α-syn) is the major constituent of LBs. As the newly discovered pathway of renin-angiotensin system (RAS), Angiotensin-(1-7) (Ang-(1-7)) and receptor Mas have attracted increasing attentions for their correlation with PD, but underlying mechanisms remain not fully clear. Based on above, this study established PD models of mice and primary dopaminergic neurons with AAV-hα-syn(A53T), then discussed the effects of Ang-(1-7)/Mas on α-syn level and neuronal apoptosis for these models combined with downstream long non-coding RNA (lncRNA) and microRNA (miRNA). Results showed that Ang-(1-7) alleviated behavioral impairments, rescued dopaminergic neurons loss and lowered α-syn expression in substantia nigra of hα-syn(A53T) overexpressed PD mice. We also discovered that Ang-(1-7) decreased level of α-syn and apoptosis in the hα-syn(A53T) overexpressed dopaminergic neurons through lncRNA NEAT1/miR-153-3p axis. Moreover, miR-153-3p level in peripheral blood is found negatively correlated with that of α-syn. In conclusion, our work not only showed neuroprotective effect and underlying mechanisms for Ang-(1-7) on α-syn in vivo and vitro, but also brought new hope on miR-153-3p and NEAT1 for diagnosis and treatment in PD.
RESUMO
At the forefront of climate change and natural disasters, small islands like Puerto Rico confront immense challenges in sustaining an adaptive water supply. The challenges are further exacerbated when the islands' constraints, such as geographic isolation, limited resources, aging infrastructure, constrained capacity, and environmental fragility, are compounded. As these issues increasingly impact low-lying continental coasts, home to approximately 40 % of the global population, similar water supply crises have already emerged or are anticipated in these regions. To surmount these widespread challenges, harnessing stormwater as a non-conventional water source presents a promising solution. A stormwater-enabled water supply system, collectively characterized by water source diversification, decentralization, and modularity, can enhance the resilience of water supply in these vulnerable regions, both in routine situations and during emergencies. This article identifies barriers to the implementation of stormwater-to-drinking water (STDW) practices in Puerto Rico and advocates for engineering solutions to utilize stormwater at both community and household scales in vulnerable continental coasts and small oceanic islands. The primary barriers in Puerto Rico include uncertainty in water quality, insufficient data on local stormwater availability and domestic water demand, economic constraints, and the lack of an adaptive power supply. To overcome these obstacles, we emphasize engineering strategies focused on modular system design, assessments of local stormwater capture and demand dynamics, advancements in treatment technologies, and the enhancement of energy resilience. By analyzing the Puerto Rican context, we propose a conceptual framework that outlines pathways to adaptive STDW strategies for other oceanic islands and larger, more complex continental coasts in the face of similar challenges. These pathways encompass enhancing system modularity, understanding the dynamics of local stormwater supply and water consumption, applying tailored treatment technologies, and strengthening the resilience of supporting infrastructures. The insights gained from Puerto Rico's experience can guide current and future efforts for resilient water supply solutions in increasingly vulnerable coastal, island, and other regions.
RESUMO
Bacteria within the family Paracoccaceae show promising potential for applications in various fields, garnering significant research attention. Three Gram stain-negative bacteria, strains CPCC 101601T, CPCC 101403T, and CPCC 100767, were isolated from diverse environments: freshwater, rhizosphere soil of Broussonetia papyrifera, and the phycosphere, respectively. Analysis of their 16S rRNA gene sequences, compared with those in the GenBank database, indicated that they belong to the family Paracoccaceae, with nucleotide similarities of 92.5%-99.9% to all of the Paracoccaceae members with valid taxonomic names. Phylogenetic studies based on 16S rRNA gene and whole-genome sequences identified CPCC 101601T as a member of the genus Pseudogemmobacter, CPCC 101403T belonging to the genus Paracoccus, and CPCC 100767 as part of the genus Gemmobacter. Notably, genomic analysis using average nucleotide identity (ANI; <95%) and digital DNA-DNA hybridization (dDDH; <70%) with their closely related strains suggested that CPCC 101601T and CPCC 101403T represent new species within their respective genera. Conversely, CPCC 100767 exhibited high ANI (98.5%) and dDDH (87.4%) values with Gemmobacter fulvus con5T, indicating it belongs to this already recognized species. The in-depth genomic analysis revealed that strains CPCC 101601T, CPCC 101403T, and CPCC 100767 harbor key genes related to the pathways for denitrifying, MA utilization, and polyhydroxyalkanoate biosynthesis. Moreover, genotyping and phenotyping analysis confirmed that strain CPCC 100767 has the ability to convert atmospheric nitrogen into ammonia and produce 5-aminolevulinic acid, whereas CPCC 101601T can only perform the former bioprocess.IMPORTANCEBased on polyphasic taxonomic study, two new species, Pseudogemmobacter lacusdianii and Paracoccus broussonetiae, affiliated with the family Paracoccaceae were identified. This expands our understanding of the family Paracoccaceae and provides new microbial materials for further studies. Modern genomic techniques such as average nucleotide identity and digital DNA-DNA hybridization were utilized to determine species affiliations. These methods offer more precise results than traditional classification mainly based on 16S rRNA gene analysis. Beyond classification of these strains, the research delved into their genomes and discovered key genes related to denitrification, MA utilization, and polyhydroxyalkanoate biosynthesis. The identification of these genes provides a molecular basis for understanding the environmental roles of these strains. Particularly, strain CPCC 100767 demonstrated the ability to convert atmospheric nitrogen into ammonia and produce 5-aminolevulinic acid. These bioprocess capabilities are of significant practical value, such as in agricultural production for use as biofertilizers or biostimulants.
RESUMO
Deep learning is a transformative force in the medical field and it has made significant progress as a pivotal alternative to conventional manual testing methods. Detection of Tubercle Bacilli in sputum samples is faced with the problems of complex backgrounds, tiny and numerous objects, and human observation over a long time not only causes eye fatigue, but also greatly increases the error rate of subjective judgement. To solve these problems, we optimize YOLOv8s model and propose a new detection algorithm, Lite-YOLOv8. Firstly, the Lite-C2f module is used to ensure accuracy by significantly reducing the number of parameters. Secondly, a lightweight down-sampling module is introduced to reduce the common feature information loss. Finally, the NWD loss is utilized to mitigate the impact of small object positional bias on the IoU. On the public Tubercle Bacilli datasets, the mean average precision of 86.3% was achieved, with an improvement of 2.2%, 1.5%, and 2.8% over the baseline model (YOLOv8s) in terms of mAP0.5, precision, and recall, respectively. In addition, the parameters reduced from 11.2 to 5.1 M, and the number of GFLOPs from 28.8 to 13.8. Our model is not only more lightweight, but also more accurate, thus it can be easily deployed on computing-poor medical devices to provide greater convenience to doctors.
RESUMO
This study proposes a new method to evaluate the effectiveness of orebody grade estimations, drawing upon the analysis of existing evaluation methods for grade estimation. This new approach addresses factors such as uneven sampling and asymmetric estimation range, which are challenging to overcome with existing evaluation techniques. The core principle of this method involves documenting how frequently individual samples are used during grade estimation and calculating the total distance weights for each sample. Subsequently, the usage frequency and total weight of the samples are standardized, and these standardized values are weighted based on the sample grades. A comparison is made between the weighted sample grades and the estimated grades, with the closeness between the two serving as a metric for assessing the effectiveness of the estimation. This study compares the new evaluation method to the direct comparison and cross-validation methods, examining the effectiveness of grade estimation using the inverse distance weighting (IDW) method. The findings revealed that: (1) The new evaluation method theoretically accounts for the systematic deviation between the statistical measures of estimated and sample grades resulting from uneven sample distribution, offering a fresh approach for enhancing the effectiveness of orebody grade estimation. (2) In the grade estimation of experimental Fe samples, the frequency of usage and the sum of distance weights were unequal. This inequality significantly contributes to the systematic deviation between the estimated and sample grades. (3) Comparing the new evaluation method to others confirms the stability and reliability of the new approach for evaluating the effectiveness of orebody grade estimation. This novel method demonstrates theoretical advantages and practical utility. (4) The deviation between the estimated grades and the statistical results of sample grades is influenced by the distribution pattern of sample grades, the spatial relationship between samples and estimation blocks, and the inherent systematic error associated with the IDW method. This systematic error cannot be overlooked.
RESUMO
Enhancing the biodegradability of old landfill leachate is vital for the efficient treatment or resource utilization of municipal solid waste. Electrochemical pretreatment emerges as a promising technology for transformation of refractory dissolved organic matter (DOM). However, the specific impact of polarity on improving biodegradability of DOM remains unclear. In this study, a divided electrolyzer was used to explore the changes in the biodegradability of DOM in old landfill leachate during electrolysis. Meanwhile, the correlation mechanism between BOD5 variation and DOM evolution was explored by spectroscopy and Maldi-TOF-MS analysis. Results shown that different polarities all have positive effect on enhancing the biodegradability of DOM, while the structural changes related with BOD5 are depending on the polarity. In the anode chamber, electrochemical oxidation (EO) generates and eliminates carboxyl groups. Additionally, EO concurrently eliminates humic-like substances, which are challenging for microorganisms to degrade, and protein-like substances, which are easily degradable by microorganisms. This creates a competitive mechanism that coexist the promotion and inhibition for biodegradability. In the cathode chamber, electrochemical reduction (ER) transforms DOM components, accumulating easily useable protein components for microorganisms. Kinetic studies show that EO related BOD5 changes are aptly described by a competition model, considering both generation and removal of bioavailable components. ER related BOD5 changes suit a pseudo-first-order kinetic model. These insights into the transformation of old leachate DOM support the development of methods predicting BOD5 evolution, crucial for future process optimization.
RESUMO
It is extremely challenging to classify steady-state visual evoked potentials (SSVEPs) in scenarios characterized by a huge scarcity of calibration data where only one calibration trial is available for each stimulus target. To address this challenge, we introduce a novel approach named OS-SSVEP, which combines a dual domain cross-subject fusion network (CSDuDoFN) with the task-related and task-discriminant component analysis (TRCA and TDCA) based on data augmentation. The CSDuDoFN framework is designed to comprehensively transfer information from source subjects, while TRCA and TDCA are employed to exploit the information from the single available calibration trial of the target subject. Specifically, CSDuDoFN uses multi-reference least-squares transformation (MLST) to map data from both the source subjects and the target subject into the domain of sine-cosine templates, thereby reducing cross-subject domain gap and benefiting transfer learning. In addition, CSDuDoFN is fed with both transformed and original data, with an adequate fusion of their features occurring at different network layers. To capitalize on the calibration trial of the target subject, OS-SSVEP utilizes source aliasing matrix estimation (SAME)-based data augmentation to incorporate into the training process of the ensemble TRCA (eTRCA) and TDCA models. Ultimately, the outputs of CSDuDoFN, eTRCA, and TDCA are combined for the SSVEP classification. The effectiveness of our proposed approach is comprehensively evaluated on three publicly available SSVEP datasets, achieving the best performance on two datasets and competitive performance on the third. Further, it is worth noting that our method follows a different technical route from the current state-of-the-art (SOTA) method and the two are complementary. The performance is significantly improved when our method is combined with the SOTA method. This study underscores the potential to integrate the SSVEP-based brain-computer interface (BCI) into daily life. The corresponding source code is accessible at https://github.com/Sungden/One-shot-SSVEP-classification.
RESUMO
In recent years, minimally invasive biopsy techniques have been widely used to generate small tissue samples that require processing in clinical pathology. However, small paraffin-embedded tissues are prone to loss due to their small size. To prevent the loss of small tissues, researchers have employed nonbiological embedding materials for preembedding, but this approach can lead to cumbersome experimental procedures and increase the chances of tissue loss. This study aimed to develop a convenient decellularized embedding material derived from biological membrane tissues to effectively protect small tissues from loss during paraffin embedding. This study decellularized three types of fresh animal-derived membrane tissues and selected the small intestine as the most suitable decellularized raw material through attempts at softening, comparing physical properties, and using tissue as the starting material. Subsequently, small tissues from various tissue sources were embedded, followed by H&E staining, Masson staining, immunofluorescence staining, and immunohistochemical staining. The decellularized material derived from biomembrane tissues (DMBT) developed in this study can reduce the loss of small tissues without the need for preembedding, thereby shortening the embedding process. This provides a new pathological embedding tool for future laboratory and clinical research and work.â¢The fat layer of the pig's small intestine is scraped off, and chemical reagents are used to defat and decellularize it.â¢Chemical reagents are used to soften and make the pig's small intestine transparent, and the decellularized pig's small intestine is dried.â¢DMBT is used for embedding and staining the biological tissue.
RESUMO
The current investigation focuses on the effect of different concentrations of green coffee bean powder (GCBp) on the physicochemical, microbiological, and sensory characteristics of whole wheat bread (WWB). C1 bread formulation (containing 1% GCBp) exhibited the highest loaf volume, suggesting optimal fermentation. Moisture analysis revealed minor alterations in the moisture retention attributes of the bread formulations. Impedance analysis suggested that C1 exhibited the highest impedance with a high degree of material homogeneity. Swelling studies suggested similar swelling properties, except C5 (containing 5% GCBp), which showed the lowest swelling percentage. Furthermore, color and microcolor analysis revealed the highest L* and WI in C1. Conversely, higher concentrations of GCBp reduced the color attributes in other GCBp-containing formulations. FTIR study demonstrated an improved intermolecular interaction in C1 and C2 (containing 2% GCBp) among all. No significant variation in the overall textural parameters was observed in GCBp-introduced formulations, except C2, which showed an improved gumminess. Moreover, the TPC (total phenolic content) and microbial analysis revealed enhanced antioxidant and antimicrobial properties in GCBp-incorporated formulations compared to Control (C0, without GCBp). The sensory evaluation showed an enhanced appearance and aroma in C1 compared to others. In short, C1 showed better physicochemical, biological, and sensory properties than the other formulations.
RESUMO
PURPOSE: The purpose of this study was to investigate the correlation between podocyte related biomarker cofilin-1 and renal function, and explore the value of cofilin-1 in predicting the risk of renal adverse prognosis in IgA nephropathy (IgAN). METHODS: Patients with primary IgAN diagnosed by initial renal biopsy performed in our hospital from January 2019 to February 2022 were included. This study was a prospective cohort study. All IgAN patients were detected the expression of cofilin-1 and other related biomarkers (RhoA, NGAL) in urine by enzyme-linked immunosorbent assay (ELISA) and follow-up at least 6 months. We also collected baseline clinicopathologial data of IgAN. The decreased renal function group was defined as baseline eGFR < 60 ml/min/1.73m2. Logistic and Cox regression model were used to analyze the correlation among cofilin-1 and renal prognosis. RESULTS: 133 IgAN patients were included, with a male-to-female ratio of 1.25:1 and an age of 37.67 ± 13.78 years, as well as an average of eGFR was 71.63 (40.42,109.33) ml/min/1.73m2. 56 patients (42.1%) had decreased renal function at baseline, with the average of eGFR was 34.07 (16.72, 49.21) ml/min/1.73 m2. 12 of which developed to renal adverse prognosis. The average of follow-up time was 22.035 ± 8.992 months. The multivariate regression analysis showed that increased urinary cofilin-1 was an independent risk factor associated with baseline renal function decline and renal adverse prognosis in IgAN patients (P < 0.05). ROC curves showed great efficacy of urinary cofilin-1 levels in diagnosing baseline renal function decline and predicting renal adverse prognosis (the area under the ROC curve was 0.708 and 0.803). CONCLUSION: Cofilin-1 as a novel biomarker of podocyte lesion is closely related to renal function decline in IgAN. Cofilin-1 has certain clinical value in predicting the risk of renal adverse prognosis. Podocyte fusion affects the renal prognosis of IgAN.
Assuntos
Cofilina 1 , Glomerulonefrite por IGA , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores/urina , Cofilina 1/urina , Taxa de Filtração Glomerular , Glomerulonefrite por IGA/urina , Glomerulonefrite por IGA/patologia , Prognóstico , Estudos Prospectivos , Adulto JovemRESUMO
BACKGROUND: Peginterferon (PegIFN) has shown promising results in the treatment of chronic hepatitis B (CHB). This study aimed to evaluate the effects of PegIFN α-2b on growth and thyroid function in young children with CHB. METHODS: A retrospective study was performed by extracting clinical data from children with CHB who received PegIFN α-2b monotherapy at the Public Health Clinical Center of Chengdu between June 2017 and December 2020. Mean, SD, independent samples t test and 1-way repeated analysis of variance were used to evaluate relevant data. RESULTS: A total of 62 children were included in this study. Overall, significant differences were observed in the weight-for-age z score (WAZ), height-for-age z score (HAZ) and body mass index-for-age z score (BAZ) at different time points ( P < 0.001). WAZ, HAZ and BAZ were not affected by PegIFN α-2b at 24 weeks of treatment (all P > 0.05). WAZ, HAZ and BAZ at the end of treatment and 48 weeks after treatment; WAZ at 96 weeks after treatment were lower than baseline levels (all P < 0.05). No statistical differences were found in HAZ and BAZ at 96 weeks after treatment compared with baseline. Thyroid dysfunction developed in 17.7% of children during the treatment. Thyroid dysfunction was transient and had no effect on growth. CONCLUSIONS: PegIFN α-2b has inhibitory effects on growth and can increase the incidence of thyroid dysfunction in young children with CHB. These effects are generally reversible with the cessation of therapy, although WAZ had not returned to baseline after 96 weeks of observation.
RESUMO
Streptococcus mutans (S. mutans) antisense vicK RNA (ASvicK) is a non-coding RNA that regulates cariogenic virulence and metabolic activity. Dimethylaminohexadecyl methacrylate (DMAHDM), a quaternary ammonium methacrylate used in dental materials, has strong antibacterial activity. This study examined the effects of S. mutans ASvicK on DMAHDM susceptibility and their combined impact on inhibiting S. mutans biofilm formation and protecting enamel hardness. The parent S. mutans UA159 and ASvicK overexpressing S. mutans (ASvicK) were tested. The minimum inhibitory concentration (MIC) and minimum bactericidal concentrations for planktonic bacteria (MBC-P) and biofilms (MBC-B) were measured. As the ASvicK MBC-B was 175 µg/mL, live/dead staining, metabolic activity (MTT), colony-forming units (CFUs), biofilm biomass, polysaccharide, and lactic acid production were investigated at 175 µg/mL and 87.5 µg/mL. The MIC, MBC-P, and MBC-B values for DMAHDM for the ASvicK strain were half those of the UA159 strain. In addition, combining S. mutans ASvicK with DMAHDM resulted in a significant 4-log CFU reduction (p < 0.05), with notable decreases in polysaccharide levels and lactic acid production. In the in vitro cariogenic model, the combination achieved the highest enamel hardness at 67.1% of sound enamel, while UA159 without DMAHDM had the lowest at 16.4% (p < 0.05). Thus, S. mutans ASvicK enhanced DMAHDM susceptibility, and their combination effectively inhibited biofilm formation and minimized enamel demineralization. The S. mutans ASvicK + DMAHDM combination shows great potential for anti-caries dental applications.
RESUMO
OBJECTIVE: The aim of this study was to investigate the characteristics and related functional pathways of the gut microbiota in patients with IgA nephropathy (IgAN) through metagenomic sequencing technology. METHODS: We enrolled individuals with primary IgAN, including patients with normal and abnormal renal function. Additionally, we recruited healthy volunteers as the healthy control group. Stool samples were collected, and species and functional annotation were performed through fecal metagenome sequencing. We employed linear discriminant analysis effect size (LEfSe) analysis to identify significantly different bacterial microbiota and functional pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to annotate microbiota functions, and redundancy analysis (RDA) was performed to analyze the factors affecting the composition and distribution of the gut microbiota. RESULTS: LEfSe analysis revealed differences in the gut microbiota between IgAN patients and healthy controls. The characteristic microorganisms in the IgAN group were classified as Escherichia coli, with a significantly greater abundance than that in the healthy control group (p < 0.05). The characteristic microorganisms in the IgAN group with abnormal renal function were identified as Enterococcaceae, Moraxella, Moraxella, and Acinetobacter. KEGG functional analysis demonstrated that the functional pathways of the microbiota that differed between IgAN patients and healthy controls were related primarily to bile acid metabolism. CONCLUSIONS: The status of the gut microbiota is closely associated not only with the onset of IgAN but also with the renal function of IgAN patients. The characteristic gut microbiota may serve as a promising diagnostic biomarker and therapeutic target for IgAN.
Assuntos
Fezes , Microbioma Gastrointestinal , Glomerulonefrite por IGA , Metagenômica , Humanos , Glomerulonefrite por IGA/microbiologia , Microbioma Gastrointestinal/genética , Masculino , Feminino , Adulto , Fezes/microbiologia , Metagenômica/métodos , Estudos de Casos e Controles , Pessoa de Meia-Idade , Moraxella/isolamento & purificação , Moraxella/genética , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Acinetobacter/isolamento & purificação , Acinetobacter/genética , Metagenoma , Adulto JovemRESUMO
Background: Observational studies have indicated that obesity is a risk factor for anorectal abscess (ARB). However, it remains unclear whether a causal genetic relationship exists between obesity and ARB. Methods: Univariate and multivariate Mendelian randomization (MR) were conducted using data from a large, published genome-wide association study (GWAS) of European ancestry to infer a causal relationship between obesity and ARB. Inverse variance weighted (IVW) analysis served as the primary analysis method, with results reported as odds ratios (OR). Results: MR analysis revealed that body mass index (BMI) positively affects ARB (OR 1.974, 95% confidence interval (CI) 1.548-2.519, p = 4.34 × 10-8). The weighted median method (OR = 1.879, 95% CI 1.248-2.829, p = 0.002) and Bayesian model averaging (BMA) (OR = 1.88, 95% CI 1.477-2.392, p = 2.85 × 10-7) also demonstrated consistent results. Subsequently, the impact of several obesity-related characteristics on ARB was assessed. Body fat percentage (BF), whole body fat mass (FM), waist circumference (WC), and hip circumference (HC) were found to be causally associated with an increased risk of ARB. However, these associations vanished after adjusting for BMI effects. Conclusion: The study confirms a positive causal effect of obesity on ARB, highlighting that reasonable weight control is an important strategy to reduce the incidence of ARB.
RESUMO
Background: Epidemiological studies have shown that early-life nutritional deficiencies are associated with an increased risk of diseases later in life. This study aimed to explore the correlation between famine exposure during the early stages of life and cataracts. Methods: We included 5,931 participants from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) 2018 cross-sectional data in our study. Subjects were categorized into three groups by their age during the famine: adulthood group, school age famine exposure group, and teenage famine exposure group. Utilizing binary logistic regression models, we investigated the relationship between early-life famine exposure and cataracts. Results: Compared to the adulthood group, both the school age exposure group (OR = 2.49, 95%CI = 1.89-3.27) and teenage exposure group (OR = 1.45, 95%CI = 1.20-1.76) had a heightened risk of developing cataracts in elderly stage. And the sex differences in the impact of famine during early years on elderly cataract risk were observed, particularly indicating a higher risk among women who experienced childhood famine compared to men with similar exposure. Conclusion: Famine exposure during the early stages of life is associated with a heightened risk of developing cataracts in old age. To prevent cataracts in elderly individuals, particularly in females, measures should be taken to address nutritional deficiencies in these specific periods.