Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(25): 17809-17816, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38884121

RESUMO

Thermally activated delayed fluorescence (TADF) has been widely applied to electroluminescent materials to take the best advantage of triplet excitons. For some materials, the TADF originates from high-level reverse intersystem crossing (hRISC), and has attracted much attention due to its high efficiency for utilizing the triplet excitons. However, reports concerning the mechanistic studies on the hRISC-TADF process and structure-property correlation are sparse. In this study, we prepared three compounds containing triphenylamine and benzophenone with different substitution positions, o-TPA-BP, m-TPA-BP, and p-TPA-BP, in which only p-TPA-BP displays strong luminescence and hRISC-TADF features. To investigate the mechanism of the substituent-position-dependent hRISC-TADF, ultrafast time-resolved spectroscopy was utilized to observe the deactivation pathways with the assistance of theoretical calculations. The results show that o-TPA-BP will not generate triplet species, and the triplet species for m-TPA-BP will rapidly deactivate. Only p-TPA-BP can transition back to the singlet state from the T2 state effectively and exhibit a large gap between T1 and T2 to favor the hRISC route. These results illustrate how the substitution position affects the ISC and further influences the luminescence properties, which can provide new insights for developing new high-efficiency luminescent materials.

2.
Nat Commun ; 15(1): 4688, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824144

RESUMO

Ultrasmall copper nanoclusters have recently emerged as promising photocatalysts for organic synthesis, owing to their exceptional light absorption ability and large surface areas for efficient interactions with substrates. Despite significant advances in cluster-based visible-light photocatalysis, the types of organic transformations that copper nanoclusters can catalyze remain limited to date. Herein, we report a structurally well-defined anionic Cu40 nanocluster that emits in the second near-infrared region (NIR-II, 1000-1700 nm) after photoexcitation and can conduct single-electron transfer with fluoroalkyl iodides without the need for external ligand activation. This photoredox-active copper nanocluster efficiently catalyzes the three-component radical couplings of alkenes, fluoroalkyl iodides, and trimethylsilyl cyanide under blue-LED irradiation at room temperature. A variety of fluorine-containing electrophiles and a cyanide nucleophile can be added onto an array of alkenes, including styrenes and aliphatic olefins. Our current work demonstrates the viability of using readily accessible metal nanoclusters to establish photocatalytic systems with a high degree of practicality and reaction complexity.

3.
Int J Biol Macromol ; 272(Pt 2): 132703, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823744

RESUMO

Lead ion is very harmful to the environment, so it is very important to study its detection methods. In this study, a novel electrochemical sensor was constructed by modifying deoxyribonucleic acid (DNA) on the electrode, which can be used for the detection of Pb2+ in the environment. Part of the mixed solution of chitosan (CS) and Pb2+ template ions was dropped onto the surface of a glassy carbon electrode. CS-Pb2+ film was cross-linked through sodium tripolyphosphate. And a novel DNA-imprinted sensor was prepared by electrodepositing CS-Pb2+ thin film with gold nanoparticles (AuNPs), removing Pb2+ templates, and immobilizing specific double-stranded DNA. The electroactive area, surface morphology, sensitivity, and electrochemical reaction mechanism of the DNA-imprinted sensor were analyzed. The elementary reaction steps were studied through electrochemical reaction kinetics analysis. The experimental results indicate that the DNA-imprinted electrochemical biosensor can quantitatively detect Pb2+ in the range of 10-100 µM (R2 = 0.9935), and its detection limit is 6.5074 µM (3σ/slope). The sensitivity of the electrochemical biosensor is 1.55233 × 10-6 A/µM, and its active areas is 6.233 cm2. The desorption mechanism and adsorption mechanism have been explored through dynamic parameter analysis. The novel DNA imprinted electrochemical biosensor developed in this paper provides a robust method for detecting lead ions in solution. Additionally, it establishes a solid groundwork for detecting other metal ions.


Assuntos
Técnicas Biossensoriais , Quitosana , DNA , Técnicas Eletroquímicas , Ouro , Chumbo , Nanopartículas Metálicas , Impressão Molecular , Quitosana/química , Chumbo/análise , Técnicas Biossensoriais/métodos , DNA/química , DNA/análise , Ouro/química , Nanopartículas Metálicas/química , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos , Adsorção
4.
Nat Commun ; 15(1): 2561, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519517

RESUMO

Cocrystal engineering is an efficient and simple strategy to construct functional materials, especially for the exploitation of novel and multifunctional materials. Herein, we report two kinds of nucleic-acid-base cocrystal systems that imitate the strong hydrogen bond interactions constructed in the form of complementary base pairing. The two cocrystals studied exhibit different colors of phosphorescence from their monomeric counterparts and show the feature of rare high-temperature phosphorescence. Mechanistic studies reveal that the strong hydrogen bond network stabilizes the triplet state and suppresses non-radiative transitions, resulting in phosphorescence even at 425 K. Moreover, the isolation effects of the hydrogen bond network regulate the interactions between the phosphor groups, realizing the manipulation from aggregation to single-molecule phosphorescence. Benefiting from the long-lived triplet state with a high quantum yield, the generation of reactive oxygen species by energy transfer is also available to utilize for some applications such as in photodynamic therapy and broad-spectrum microbicidal effects. In vitro experiments show that the cocrystals efficiently kill bacteria on a tooth surface and significantly help prevent dental caries. This work not only provides deep insight into the relationship of the structure-properties of cocrystal systems, but also facilitates the design of multifunctional cocrystal materials and enriches their potential applications.


Assuntos
Anti-Infecciosos , Cárie Dentária , Ácidos Nucleicos , Humanos , Cristalização , Anti-Infecciosos/farmacologia
5.
Metabolites ; 14(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38248861

RESUMO

This study was conducted to explore the potential effect of Yucca schidigera extract (YSE) on the metabolism of beef cattle. Thirty Angus crossbreed steers were selected, with an initial mean body weight of 506.6 ± 33.3 kg, and assigned to two treatments: a diet with no additives (CON group) and a diet supplemented with 1.75 g/kg of YSE (YSE group) (on a dry matter basis). The experiment lasted for 104 days, with 14 days for adaptation. The results showed that adding YSE could significantly improve the average daily gain (ADG) from 1 to 59 d (15.38%) (p = 0.01) and 1 to 90 d (11.38%) (p < 0.01), as well as dry matter digestibility (DMD) (0.84%) (p < 0.05). The contents of alanine aminotransferase, aspartate aminotransferase, and bilirubin and the total antioxidant capacity were increased and blood urea was reduced in the YSE group, compared to the CON group (p < 0.05). Both the glycerophospholipids and bile acids, including phosphocholine, glycerophosphocholine, PC(15:0/18:2(9Z,12Z)), PE(18:0/20:3(5Z,8Z,11Z)), PE(18:3(6Z,9Z,12Z)/P-18:0), LysoPC(15:0), LysoPC(17:0), LysoPC(18:0), LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)), deoxycholic acid, glycocholic acid, and cholic acid, were upregulated by the addition of YSE. In summary, YSE may improve the ADG by increasing the blood total antioxidant capacity and glycerophospholipid synthesis, maintaining steers under a healthy status that is beneficial for growth. Furthermore, YSE may also increase the expression of bile acid synthesis, thereby promoting DMD, which, in turn, offers more nutrients available for growth.

6.
Nature ; 626(7998): 377-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109938

RESUMO

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Assuntos
Archaea , Bactérias , Ecossistema , Evolução Molecular , Genes Arqueais , Genes Bacterianos , Genômica , Conhecimento , Peptídeos Antimicrobianos/genética , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biomarcadores , Movimento Celular/genética , Neoplasias Colorretais/genética , Genômica/métodos , Genômica/tendências , Metagenômica/tendências , Família Multigênica , Filogenia , Reprodutibilidade dos Testes
7.
Environ Monit Assess ; 196(1): 22, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060083

RESUMO

In order to detect Ag+ and Hg2+ in seawater, we explored a multifunctional fluorescence sensor. A multifunctional Ag+ and Hg2+ sensor was designed by using gold nanoparticles (AuNPs) as quenching agent, PicoGreen dye as fluorescent probe of base pairing double-stranded deoxyribonucleic acid (DNA), and combining the characteristics of Ag+ making C base mismatch and Hg2+ making T base mismatch. Meanwhile, the DNA logic gate was constructed by establishing logic circuit, truth table, and logic formula. The relevant performances of the sensor were investigated. The results revealed that the sensor can detect Ag+ in the range of 100 to 700 nM with R2 = 0.98129, and its detection limit is 16.88 nM (3σ/slope). The detection range of Hg2+is 100-900 nM with R2 = 0.99725, and the detection limit is 5.59 nM (3σ/slope). An AND-AND-NOR-AND molecular logic gate has been successfully designed. With the characteristics of high sensitivity, multifunction, and low cost, the recommended detection method has the potential to be applied to the detection of Ag+ and Hg2+ in seawater.


Assuntos
Mercúrio , Nanopartículas Metálicas , Ouro , Monitoramento Ambiental , DNA , Mercúrio/análise , Espectrometria de Fluorescência/métodos , Água do Mar , Limite de Detecção
8.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37818997

RESUMO

Photofunctional materials based on donor-acceptor molecules have drawn intense attention due to their unique optical properties. Importantly, Systematic investigation of substitution effects on excited-state charge transfer dynamics of donor-acceptor molecules is a powerful approach for identifying application-relevant design principles. Here, by coupling phenothiazine (PTZ) at the ortho-, meta-, and para-positions of the benzene ring of benzophenone (BP), three regioisomeric BP-PTZ dyads were designed to understand the relationship between substituted positions and excited-state evolution channels. Ultrafast transient absorption is used to detect and trace the transient species and related evolution channels of BP-PTZ dyads at excited state. In a non-polar solvent, BP-o-PTZ undergoes the through-space charge transfer process to produce a singlet charge-transfer (1CT) state, which subsequently proceeds the intersystem crossing process and transforms into a triplet charge-transfer (3CT) state; BP-m-PTZ experiences intramolecular charge transfer (ICT) process to generate the 1CT state, which subsequently transforms into the 3CT state by the intersystem crossing (ISC) and finally converts into the local-excited triplet (3LE) state; as for BP-p-PTZ, only 3LE states can be detected after the ISC process from the 1CT state. On the other hand, the twisted ICT states are generated via twisted motion between the donor and acceptor for all BP-PTZ dyads or planarization of the PTZ unit in high polar solvents. The excited-state theoretical calculations unveil that the features of ICT and intramolecular interaction between the three dyads play a decisive role in determining the through-bond charge transfer and through-space charge transfer processes. Also, these results demonstrate that the excited-state evolution channels of PTZ derivatives could be modified by tuning the substituted positions of the donor-acceptor dyads. This study provides a deep perspective for the substitute-position effect on donor-acceptor-type PTZ derivatives.

9.
Angew Chem Int Ed Engl ; 62(35): e202306890, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37421410

RESUMO

Non-alternant topologies have attracted considerable attention due to their unique physiochemical characteristics in recent years. Here, three novel topological nanographenes molecular models of nitrogen-doped Stone-Thrower-Wales (S-T-W) defects were achieved through intramolecular direct arylation. Their chemical structures were unambiguously elucidated by single-crystal analysis. Among them, threefold intramolecular direct arylation compound (C42 H21 N) is the largest nanographene bearing a N-doped non-alternant topology to date, in which the non-benzenoid rings account for 83 % of the total molecular skeleton. The absorption maxima of this compound was located in the near-infrared region with a long tail up to 900 nm, which was much longer than those reported for similarly sized N-doped nanographene with six-membered rings (C40 H15 N). In addition, the electronic energy gaps of these series compounds clearly decreased with the introduction of non-alternant topologies (from 2.27 eV to 1.50 eV). It is noteworthy that C42 H21 N possesses such a low energy gap (Eg opt =1.40 eV; Eg cv =1.50 eV), yet is highly stable under ambient conditions. Our work reported herein demonstrates that the non-alternant topology could significantly influence the electronic configurations of nanocarbons, where the introduction of a non-alternanting topology may be an effective way to narrow the energy gap without extending the molecular π-conjugation.

10.
Photochem Photobiol Sci ; 22(9): 2133-2142, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37195390

RESUMO

The organic UVA filter is popularized in sunscreen cosmetics due to the advantages of excellent light stability and high molar extinction coefficient. However, the poor water solubility of organic UV filters has been a common problem. Given that nanoparticles (NPs) can significantly improve the water solubility of organic chemicals. Meanwhile, the excited-state relaxation pathways of NPs might differ from their solution. Here, the NPs of diethylamino hydroxybenzoyl hexyl benzoate (DHHB), a popular organic UVA filter, were prepared by an advanced ultrasonic micro-flow reactor. The surfactant (sodium dodecyl sulfate) was selected as an effective stabilizer to prevent the self-aggregation of the NPs for DHHB. Femtosecond transient ultrafast spectroscopy (fs-TA) and theoretical calculations were utilized to trace and explain the excited-state evolution of DHHB in NPs suspension and its solution. The results reveal that the surfactant-stabilized NPs of DHHB reserve a similarly good performance of ultrafast excited-state relaxation. The stability characterization experiments demonstrate that the strategy of surfactant-stabilized NPs for sunscreen chemicals can maintain its stability and enhance the water solubility of DHHB compared with that of the solution phase. Therefore, the surfactant-stabilized NPs of organic UV filters are an effective method to improve water solubility and keep the stability from aggregation and photoexcitation.

11.
Chemistry ; 29(16): e202203684, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36453719

RESUMO

The self-assembled fluorogen activating protein (FAP)-malachite green (MG) complex is a well-established protein-ligand system, which can realize binding-caused fluorescence turn-on of MG and singlet oxygen (1 O2 ) generation by MG iodination. To clarify the mechanism of fluorescence activation and 1 O2 generation, the photodynamics of different halogen-substituted MG derivatives and their corresponding FAP-MG complexes were studied by femtosecond transient absorption spectroscopy and theoretical computations. The results show that the rotation of MG is restricted by FAP binding, which prevents a rapid internal conversion to allow a longer lifetime for the excited MG to undergo fluorescence emission and intersystem crossing. Moreover, these FAP-MG complexes exhibit notably varied fluorescence quantum yields (ΦFL ) and 1 O2 yields. The study on the decay pathways indicates that such an anti-heavy atom effect predominately stems from the lifetimes of the excited-state species. The photodynamic mechanism study here will lead to more advanced FAP-MG systems with high spatiotemporal resolution.

12.
J Phys Chem B ; 126(45): 9388-9398, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36331406

RESUMO

The photophysical and photochemical reaction pathways of ortho-methylbenzophenone (o-MeBP) in different solutions were investigated by employing femtosecond to nanosecond transient absorption and nanosecond time-resolved resonance Raman spectroscopy methods. In pure acetonitrile, neutral or pH 1 aqueous solutions, o-MeBP exhibit similar excited-state evolutions upon excitation in which o-MeBP will experience excitation to an excited state then undergo intersystem crossing and solvent arrangement followed by 1,5 hydrogen atom transfer processes to form the first singlet excited state, triplet state (n, π*), biradical intermediates, and enol form transients, respectively. However, in a pH 0 acidic solution, the protonation of o-MeBP will form the cation biradical intermediate that facilitates radical coupling to generate a benzocyclobutanol product, which causes a dramatic reduction of the lifetime of the enol form transients. In contrast, in sodium bicarbonate solution, the biradical intermediate may be quenched by the bicarbonate ion to construct a C-C bond and form the carboxylic acid that causes a fast decay of biradical intermediate. These results demonstrate that the photophysical and photochemical reaction pathways of o-MeBP are pH-dependent in aqueous solution which may be very useful for the capture of CO2 capture by photoexcitation of aromatic ketones.


Assuntos
Análise Espectral Raman , Água , Água/química , Solventes
13.
Phys Chem Chem Phys ; 24(23): 14623-14630, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35670215

RESUMO

Donor and acceptor (D-A) compounds based on benzophenone (BP) and carbazole (Cz) were recently reported to exhibit an extraordinary long afterglow phosphorescence in the solid state. However, the BP derivatives' mechanism of long afterglow phosphorescence is obscure. BP-o-Cz, BP-m-Cz, and BP-p-Cz were designed by coupling Cz at the ortho-, meta- and para-positions of the BP's benzene ring to uncover the excited-state evolution of BP-Cz molecules. Femtosecond and nanosecond transient absorption and excited-state theoretical calculations were carried out to detect and trace the photophysical process of BP-Cz dyads. After the excitation, all dyads experience intramolecular charge transfer (ICT) and intersystem crossing (ISC) processes. The resulting charge-transfer (1CT and 3CT) state of BP-o-Cz will decay to the ground state directly and quickly via the fast charge recombination (CR) process, which may be caused by through-space D-A interaction due to the enforced proximity between BP and Cz. In contrast, for BP-m-Cz and BP-p-Cz dyads, the complete separation of HOMOs and LUMOs leads to extended ICT and slow CR processes, producing an obvious Cz cation radical intermediate and an ultralong-lived triplet state species after the 3CT. Herein, we demonstrated that the excited-state evolution channels could be modified by tuning the substituted positions of D-A dyads. This may pave the way for designing efficient D-A type luminescent materials.

14.
Nucleic Acids Res ; 50(W1): W577-W582, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35544233

RESUMO

Phylogenomics data have grown exponentially over the last decades. It is currently common for genome-wide projects to generate hundreds or even thousands of phylogenetic trees and multiple sequence alignments, which may also be very large in size. However, the analysis and interpretation of such data still depends on custom bioinformatic and visualisation workflows that are largely unattainable for non-expert users. Here, we present PhyloCloud, an online platform aimed at hosting, indexing and exploring large phylogenetic tree collections, providing also seamless access to common analyses and operations, such as node annotation, searching, topology editing, automatic tree rooting, orthology detection and more. In addition, PhyloCloud provides quick access to tools that allow users to build their own phylogenies using fast predefined workflows, graphically compare tree topologies, or query taxonomic databases such as NBCI or GTDB. Finally, PhyloCloud offers a novel tree visualisation system based on ETE Toolkit v4.0, which can be used to explore very large trees and enhance them with custom annotations and multiple sequence alignments. The platform allows for sharing tree collections and specific tree views via private links, or make them fully public, serving also as a repository of phylogenomic data. PhyloCloud is available at https://phylocloud.cgmlab.org.


Assuntos
Biologia Computacional , Genoma , Filogenia , Alinhamento de Sequência , Bases de Dados Genéticas
15.
Chem Res Toxicol ; 35(1): 89-98, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962376

RESUMO

Carprofen (CP), one kind of a nonsteroidal anti-inflammatory drug, exhibits phototoxic side effects in physiology, while its phototoxic mechanism is ambiguous. To uncover CP's photophysical and photochemical reaction processes, femtosecond to nanosecond transient absorption spectroscopies were employed to directly detect excited states and transient intermediates of CP upon UV irradiation in pure acetonitrile (MeCN), MeCN/water 1:1, and acid/alkaline buffer solutions. The transient absorption data together with DFT calculations were integrated to elucidate mechanisms for photochemical reactions of CP in different solutions. The associated photophysical and photochemical reaction pathways are dependent on various solution environments. In a pure MeCN solvent, CP is excited to a singlet state (S1) and rapidly interacts with the solvent to proceed solvent rearrangement (SR). It then undergoes vibrational cooling (VC) and proceeds intersystem crossing (ISC) to produce the lowest triplet state (3CP). 3CP finally decays to the ground state. While in a MeCN/water 1:1 solution, deprotonated S1 of CP experiences SR and VC processes, and then it is promoted to a deprotonated triplet state (3CP-). 3CP- undergoes the parallel reactions: dechlorination to a phenyl radical (2CP-) and decarboxylation to a T1 anion (3CP-(de-CO2)). Finally, both intermediates produce the radical anion species 2CP-(de-CO2). In a pH = 7.4 (MeCN/PBS 1:1) solution, 3CP- can be converted into 2CP-(de-CO2) more quickly. Interestingly, we found that the dechlorination step can be promoted in an alkaline solution. Phenyl and chlorine radicals produced in an aqueous solution may be the root cause of the drug's harmful side effects on the human body. This may be useful to guide the design of related CP drugs with minimal phototoxicity in the pharmaceutical process.


Assuntos
Anti-Inflamatórios não Esteroides/química , Carbazóis/química , Acetonitrilas/química , Humanos , Estrutura Molecular , Processos Fotoquímicos , Soluções , Fatores de Tempo , Raios Ultravioleta , Água/química
16.
Nanomaterials (Basel) ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34684928

RESUMO

Mercury is one of the most toxic heavy metals that can cause terrible disease for human beings. Among different absorption materials, MOF (metal-organic framework) materials show potential as very attractive materials for the rapid removal of mercury. However, the instability and difficulty for regeneration of MOF crystals limit their applications. Here, a continuous sulfur-modified MOF (UiO-66-NHC(S)NHMe) layer was synthesized in situ on polymeric membranes (PP non-woven fabrics) by post-synthetic modification and used for rapid mercury removal. The MOF-based membrane (US-N) showed high selectivity for mercury in different aqueous systems, which is better than sulfur-modified MOF powders. A thinner MOF layer on US-N showed a much better mercury ion removal performance. US-N with a 59.3 nm MOF layer could remove more than 85% of mercury in 20 min from an aqueous solution. In addition, the US-N can simply regenerate several times for mercury removal and maintain the initial performance (removal ratio > 98%), exhibiting excellent durability and stability. This work promotes the application of MOF materials in the rapid removal of hazardous heavy metal ions from practical environments.

17.
J Phys Chem Lett ; 12(17): 4306-4312, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33913708

RESUMO

Noncovalent interaction between small molecules can generate a charge-transfer (CT) state, achieving the effect of a conjugated large molecule as well as a transition-metal complex. Herein, we demonstrate a room-temperature stable dianion biradical conveniently produced by noncovalent intermolecular CT interaction between anthraquinone (AQ) and potassium tert-butoxide (KOtBu). Essentially, CT from KOtBu to AQ boosts absorption bands from the UV to visible and near-infrared (NIR) range, enabling AQ-KOtBu to have new absorption bands around 400, 550, and 900 nm. The absorption bands of AQ-KOtBu are dramatically enhanced after blue-to-green or NIR light excitation. Interestingly, both ground state AQ-KOtBu (C(1)) and photoexcited AQ-KOtBu (C(2)) are quenched by oxygen to produce singlet oxygen. Furthermore, C(1) can be photoactivated by purged nitrogen in solution, and C(2) can be regenerated after the photoexcitation and purged nitrogen in solution, which may serve as a photosensitizer under visible and NIR light excitation.

18.
J Phys Chem Lett ; 12(1): 41-48, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33296591

RESUMO

The C═C photoswitching molecules [1,2-di(4-pyridyl)ethylene (DPE), 4-styrylpyridine (SP), and trans-1,2-stilbene (TS)] show favorable photoisomerization characteristics. Although the solid states of photoswitching molecules are usually used in optical devices, their excited state's evolution has been little explored. Here, the excited state's relaxation of DPE, SP, and TS in nanocrystal/microcrystal suspensions as well as in solution phase was studied to uncover the early events of their excited states. The dynamics of nanocrystal/microcrystal suspensions was tremendously accelerated in comparison to the kinetics obtained in the solution for these molecules under excitation. DPE exhibits the slowest decay rate, while SP shows the fastest decay rate in nanocrystal suspensions or solution, suggesting SP may be the best candidate for the photoswitching device. The intermolecular interactions and space restriction of the crystal lead to the acceleration of the excited state's evolution for DPE, SP, and TS. This provides new insight into the design of optical materials.

19.
Chemistry ; 27(4): 1337-1345, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32776379

RESUMO

By utilizing the bipolarity of 1,2-diphenylphenanthroimidazole (PPI), two types of asymmetrical tripartite triads (PPI-TPA and PPI-PCz) were designed with triphenylamine (TPA) and 9-phenylcarbazole (PCz). These triads are deep-blue luminescent materials with a high fluorescence quantum yield of nearly 100 %. To trace the photophysical behaviors of these triads, their excited-state evolution channels and interchromophoric interactions were investigated by ultrafast time-resolved transient absorption and excited-state theoretical calculations. The results suggest that the electronic nature, asymmetrical tripartite structure, and electron-hole distance of these triads, as well as solvent polarity, determine the lifetime of intramolecular charge transfer (ICT). Interestingly, PPI-PCz triads show anti-Kasha ICT, and the charge-transfer direction among the triads is adjustable. For the PPI-TPA triad, the electron is transferred from TPA to PPI, whereas for the PPI-PCz triad the electron is pushed from PPI to PCz. Exploration of the excited-state ICT in these triads may pave the way to design better luminescent materials in the future.

20.
J Phys Chem Lett ; 10(21): 6499-6503, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31589456

RESUMO

Two widely used ultraviolet filters, oxybenzone and dioxybenzone, are applied in a variety of areas, particularly in sunscreen cosmetics. Ultrafast femtosecond transient absorption is utilized to trace the excited states and transient states of the nanocrystalline suspension and solution phase of these two molecules. The analysis reveals the intriguing discovery that the transient species of the oxybenzone nanocrystalline suspension have shorter lifetimes than that in solution. The energy dissipation mechanism of these molecules is simulated by density functional theory calculations, and the potential energy surface calculations and the single-crystal structure can well explain the fast decay dynamics of the nanocrystalline transient states of these two molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...