Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14911, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689718

RESUMO

The spinocerebellar ataxias (SCA) comprise a group of inherited neurodegenerative diseases. SCA3 is the most common form, caused by the expansion of CAG repeats within the ataxin 3 (ATXN3) gene. The mutation results in the expression of an abnormal protein, containing long polyglutamine (polyQ) stretches. The polyQ stretch confers a toxic gain of function and leads to misfolding and aggregation of ATXN3 in neurons. Thus, modulators of ATXN3 expression could potentially ameliorate the pathology in SCA3 patients. Therefore, we generated a CRISPR/Cas9 modified ATXN3-Exon4-Luciferase (ATXN3-LUC) genomic fusion- and control cell lines to perform a reporter cell line-based high-throughput screen comprising 2640 bioactive compounds, including the FDA approved drugs. We found no unequivocal inhibitors of, but identified statins as activators of the LUC signal in the ATXN3-LUC screening cell line. We further confirmed that Simvastatin treatment of wild type SK-N-SH cells increases ATXN3 mRNA and protein levels which likely results from direct binding of the activated sterol regulatory element binding protein 1 (SREBP1) to the ATXN3 promotor. Finally, we observed an increase of normal and expanded ATXN3 protein levels in a patient-derived cell line upon Simvastatin treatment, underscoring the potential medical relevance of our findings.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Ataxias Espinocerebelares , Humanos , Ataxina-3/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neurônios , Sinvastatina
2.
Nat Commun ; 14(1): 5034, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596282

RESUMO

Prion-like spreading of protein misfolding is a characteristic of neurodegenerative diseases, but the exact mechanisms of intercellular protein aggregate dissemination remain unresolved. Evidence accumulates that endogenous retroviruses, remnants of viral germline infections that are normally epigenetically silenced, become upregulated in neurodegenerative diseases such as amyotrophic lateral sclerosis and tauopathies. Here we uncover that activation of endogenous retroviruses affects prion-like spreading of proteopathic seeds. We show that upregulation of endogenous retroviruses drastically increases the dissemination of protein aggregates between cells in culture, a process that can be inhibited by targeting the viral envelope protein or viral protein processing. Human endogenous retrovirus envelopes of four different clades also elevate intercellular spreading of proteopathic seeds, including pathological Tau. Our data support a role of endogenous retroviruses in protein misfolding diseases and suggest that antiviral drugs could represent promising candidates for inhibiting protein aggregate spreading.


Assuntos
Esclerose Lateral Amiotrófica , Retrovirus Endógenos , Príons , Humanos , Retrovirus Endógenos/genética , Agregados Proteicos , Antivirais
3.
Biomaterials ; 286: 121525, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35599022

RESUMO

Optimizing drug candidates for blood-brain barrier (BBB) penetration remains one of the key challenges in drug discovery to finally target brain disorders including neurodegenerative diseases which do not have adequate treatments so far. It has been difficult to establish state-of-the-art stem cell derived in vitro models that mimic physiological barrier properties including a 3D microvasculature in a format that is scalable to screen drugs for BBB penetration. To address this challenge, we established human induced pluripotent stem cell (iPSC)-derived brain endothelial microvessels in a standardized and scalable multi-well plate format. iPSC-derived brain microvascular endothelial cells (BMECs) were supplemented with primary cell conditioned media and grew to microvessels in 10 days. Produced microvessels show typical BBB endothelial protein expression, tight-junctions and polarized localization of efflux transporter. Microvessels exhibited physiological relevant trans-endothelial electrical resistance (TEER), were leak-tight for 10 kDa dextran-Alexa 647 and strongly limited the permeability of sodium fluorescein (NaF). Permeability tests with reference compounds confirmed the suitability of our model as platform to identify potential BBB penetrating anti-inflammatory drugs. The here presented platform recapitulates physiological properties and allows rapid screening of BBB permeable anti-inflammatory compounds that has been suggested as promising substances to cure so far untreatable neurodegenerative diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Barreira Hematoencefálica/metabolismo , Encéfalo/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microvasos/metabolismo , Permeabilidade
4.
Nat Commun ; 12(1): 5739, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667166

RESUMO

Protein aggregates associated with neurodegenerative diseases have the ability to transmit to unaffected cells, thereby templating their own aberrant conformation onto soluble homotypic proteins. Proteopathic seeds can be released into the extracellular space, secreted in association with extracellular vesicles (EV) or exchanged by direct cell-to-cell contact. The extent to which each of these pathways contribute to the prion-like spreading of protein misfolding is unclear. Exchange of cellular cargo by both direct cell contact or via EV depends on receptor-ligand interactions. We hypothesized that enabling these interactions through viral ligands enhances intercellular proteopathic seed transmission. Using different cellular models propagating prions or pathogenic Tau aggregates, we demonstrate that vesicular stomatitis virus glycoprotein and SARS-CoV-2 spike S increase aggregate induction by cell contact or ligand-decorated EV. Thus, receptor-ligand interactions are important determinants of intercellular aggregate dissemination. Our data raise the possibility that viral infections contribute to proteopathic seed spreading by facilitating intercellular cargo transfer.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Vesículas Extracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Agregação Patológica de Proteínas/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral/metabolismo , Adulto , Idoso , Encéfalo/patologia , Estudos de Casos e Controles , Linhagem Celular , Endocitose , Feminino , Humanos , Microscopia Intravital , Masculino , Pessoa de Meia-Idade , Príons/metabolismo , Agregação Patológica de Proteínas/patologia , Dobramento de Proteína , Proteínas tau/metabolismo
5.
Sci Rep ; 11(1): 19857, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615900

RESUMO

Multiplications, mutations and dysregulation of the alpha synuclein gene (SNCA) are associated with the demise of dopaminergic neurons and are considered to play important roles in the pathogenesis of familial and sporadic forms of Parkinson's disease. Regulation of SNCA expression might thus be an appropriate target for treatment. We aimed to identify specific modulators of SNCA transcription, generated CRISPR/Cas9 modified SNCA-GFP-luciferase (LUC) genomic fusion- and control cell lines and screened a library of 1649 bioactive compounds, including the FDA approved drugs. We found no inhibitors but three selective activators which increased SNCA mRNA and protein levels.


Assuntos
Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , alfa-Sinucleína/genética , Linhagem Celular , Metilação de DNA , Descoberta de Drogas/métodos , Expressão Gênica , Genes Reporter , Histonas/metabolismo , Humanos , Bibliotecas de Moléculas Pequenas , alfa-Sinucleína/metabolismo
6.
Neurobiol Aging ; 76: 24-34, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30640040

RESUMO

We have developed a cell-based phenotypic automated high-content screening approach for N2a cells expressing the pro-aggregant repeat domain of tau protein (tauRDΔK), which allows analysis of a chemogenomic library of 1649 compounds for their effect on the inhibition or stimulation of intracellular tau aggregation. We identified several inhibitors and stimulators of aggregation and achieved a screening reproducibility >85% for all data. We identified 18 potential inhibitors (= 1.1% of the library) and 10 stimulators (= 0.6% of the library) of tau aggregation in this cell model of tau pathology. The results provide insights into the regulation of cellular tau aggregation and the pathways involved in this process (e.g., involving signaling via p38 mitogen-activated protein kinase, histone deacetylases, vascular endothelial growth factor, rho/ROCK). For example, inhibitors of protein kinases (e.g., p38) can reduce tau aggregation, whereas inhibitors of deacetylases (histone deacetylases) can enhance aggregation. These observations are compatible with reports that phosphorylated or acetylated tau promotes pathology.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Agregação Patológica de Proteínas/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Proteínas tau/metabolismo , Linhagem Celular , Inibidores de Histona Desacetilases , Histona Desacetilases/farmacologia , Humanos , Modelos Biológicos , Agregação Patológica de Proteínas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Tauopatias/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
7.
Mol Neurobiol ; 55(11): 8355-8373, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29546591

RESUMO

Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.


Assuntos
Estresse do Retículo Endoplasmático , Miostatina/metabolismo , Agregados Proteicos , Adolescente , Adulto , Idoso , Peptídeos beta-Amiloides/metabolismo , Biópsia , Calreticulina/metabolismo , Linhagem Celular Tumoral , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Metaboloma , Pessoa de Meia-Idade , Peso Molecular , Músculo Esquelético/patologia , Mioblastos/metabolismo , Miosite de Corpos de Inclusão/patologia , Precursores de Proteínas/metabolismo , Frações Subcelulares/metabolismo , Vacúolos/metabolismo , Adulto Jovem
8.
mBio ; 7(4)2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406566

RESUMO

UNLABELLED: Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer. IMPORTANCE: Prions are proteinaceous infectious particles that propagate by templating their quaternary structure onto nascent proteins of the same kind. Prions in yeast act as heritable epigenetic elements that can alter the phenotype when transmitted to daughter cells or during mating. Prion activity is conferred by so-called prion domains often enriched in glutamine and asparagine residues. Interestingly, many mammalian proteins also contain domains with compositional similarity to yeast prion domains. We have recently provided a proof-of-principle demonstration that a yeast prion domain also retains its prion activity in mammalian cells. We demonstrate here that cytosolic prions composed of a yeast prion domain are also packaged into extracellular vesicles that transmit the prion phenotype to bystander cells. Thus, proteins with prion-like domains can behave as proteinaceous information molecules that exploit the cellular vesicle trafficking machinery for intercellular long-distance dissemination.


Assuntos
Vesículas Extracelulares/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Príons/genética , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animais , Linhagem Celular , Camundongos , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
J Biomol Screen ; 20(2): 190-201, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25409661

RESUMO

EZH2 inhibition can decrease global histone H3 lysine 27 trimethylation (H3K27me3) and thereby reactivates silenced tumor suppressor genes. Inhibition of EZH2 is regarded as an option for therapeutic cancer intervention. To identify novel small-molecule (SMOL) inhibitors of EZH2 in drug discovery, trustworthy cellular assays amenable for phenotypic high-throughput screening (HTS) are crucial. We describe a reliable approach that quantifies changes in global levels of histone modification marks using high-content analysis (HCA). The approach was validated in different cell lines by using small interfering RNA and SMOL inhibitors. By automation and miniaturization from a 384-well to 1536-well plate, we demonstrated its utility in conducting phenotypic HTS campaigns and assessing structure-activity relationships (SAR). This assay enables screening of SMOL EZH2 inhibitors and can advance the mechanistic understanding of H3K27me3 suppression, which is crucial with regard to epigenetic therapy. We observed that a decrease in global H3K27me3, induced by EZH2 inhibition, comprises two distinct mechanisms: (1) inhibition of de novo DNA methylation and (II) inhibition of dynamic, replication-independent H3K27me3 turnover. This report describes an HCA assay for primary HTS to identify, profile, and optimize cellular active SMOL inhibitors targeting histone methyltransferases, which could benefit epigenetic drug discovery.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Histonas/metabolismo , Microscopia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Automação Laboratorial , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Proteína Potenciadora do Homólogo 2 de Zeste , Técnicas de Silenciamento de Genes , Histonas/antagonistas & inibidores , Histonas/genética , Humanos , Concentração Inibidora 50 , Metilação/efeitos dos fármacos , Interferência de RNA , Relação Estrutura-Atividade
10.
Proc Natl Acad Sci U S A ; 110(15): 5951-6, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23509289

RESUMO

Prions are self-templating protein conformers that replicate by recruitment and conversion of homotypic proteins into growing protein aggregates. Originally identified as causative agents of transmissible spongiform encephalopathies, increasing evidence now suggests that prion-like phenomena are more common in nature than previously anticipated. In contrast to fungal prions that replicate in the cytoplasm, propagation of mammalian prions derived from the precursor protein PrP is confined to the cell membrane or endocytic vesicles. Here we demonstrate that cytosolic protein aggregates can also behave as infectious entities in mammalian cells. When expressed in the mammalian cytosol, protein aggregates derived from the prion domain NM of yeast translation termination factor Sup35 persistently propagate and invade neighboring cells, thereby inducing a self-perpetuating aggregation state of NM. Cell contact is required for efficient infection. Aggregates can also be induced in primary astrocytes, neurons, and organotypic cultures, demonstrating that this phenomenon is not specific to immortalized cells. Our data have important implications for understanding prion-like phenomena of protein aggregates associated with human diseases and for the growing number of amyloidogenic proteins discovered in mammals.


Assuntos
Comunicação Celular , Citosol/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Astrócitos/citologia , Técnicas de Cocultura , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Camundongos , Microscopia Confocal , Doenças Priônicas , Conformação Proteica , Saccharomyces cerevisiae/metabolismo
11.
Comb Chem High Throughput Screen ; 11(3): 216-30, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18336214

RESUMO

High-Content Analysis (HCA) has developed into an established tool and is used in a wide range of academic laboratories and pharmaceutical research groups. HCA is now routinely proving to be effective in providing functionally relevant results. It is essential to select the appropriate HCA application with regard to the targeted compound's cellular function. The cellular impact and compound specificity as revealed by HCA analysis facilitates reaching definitive conclusions at an early stage in the drug discovery process. This technology therefore has the potential to substantially improve the efficiency of pharmaceutical research. Recent advances in fluorescent probes have significantly boosted the success of HCA. Auto-fluorescent proteins which minimally hinder the functioning of the living cell have been playing a decisive role in cell biology research. For companies the severely restricted license conditions regarding auto-fluorescent proteins hamper their general use in pharmaceutical research. This has opened the field for other solutions such as self-labeling protein technology, which could potentially replace the well established methods that utilize auto-fluorescent proteins. In addition, direct labeling techniques have improved considerably and may supersede many of the approaches based on fusion proteins. Following sample preparation, treated cells are imaged and the resulting multiple fluorescent signals are subjected to contextual and statistical analysis. The extraordinary advantage of HCA is that it enables the large-scale and simultaneous quantification and correlation of multiple phenotypic responses and physiological reactions using sophisticated software solutions that permit assay-specific image analysis. Hence, HCA once more has demonstrated its outstanding potential to significantly support establishing effective pharmaceutical research processes in order to both advance research projects and cut costs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Varredura a Laser/métodos , Animais , Biologia Computacional , Avaliação Pré-Clínica de Medicamentos/instrumentação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Citometria de Varredura a Laser/instrumentação , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...