Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(19): e38097, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39398076

RESUMO

Genotype × environment interaction (GEI) poses a critical challenge to plant breeders by complicating the identification of stable variety (ies) for performance across diverse environments. GGE biplot and AMMI analyses have been identified as the most effective and appropriate statistical techniques for identifying stable and high-performing genotypes across diverse environments. The objective of this study was to identify widely adapted and high-yielding soybean genotypes from Multi-Locational Trials (MLTs) using GGE and AMMI biplot analyses. Fifteen IITA-bred elite soybean lines and three standard checks were evaluated for stability of performance in a 3 × 6 alpha lattice design with three replications across seven locations in Nigeria. Significant (p < 0.001) differences were detected among genotypes, environments, and GEI for grain yield, which ranged between 979.8 kg ha-1 and 3645 kg ha-1 with a mean of 2324 kg ha-1. To assess the stability of genotypes, analyses were conducted using the general linear method, GGE, and the Additive Main Effect and Multiplicative Interaction (AMMI) approach, as well as WAAS and ASV rank indices. In the GGE biplot model, the first two principal components accounted for 67.4 % of the total variation, while in the AMMI model, the first two Interaction Principal Component Axes (IPCA1 and IPCA2) explained 73.20 % and 11.40 % of the variation attributed to genotype by environment interaction, respectively. GGE biplot identified G10 and G16 as the most stable and productive genotypes, while WAASB index revealed G16, G10, G9, G4 and G2 as the most adaptive, stable and productive genotypes across locations, and ASV identified G9, G13, G4, G14 and G10 as the most stable and productive. Consequently, genotypes G2, G4, G9, G10 and G16 displayed outstanding and stable grain yield performance across the test locations and are, therefore, recommended for release as new soybean varieties suitable for cultivation in the respective mega environment where they performed best. More importantly, the two genotypes are recommended for recycling as sources of high-yield and yield stability genes, and as parental lines for high-yield and stable performance for future breeding and genomic selection.

3.
Plant Genome ; 17(2): e20471, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923724

RESUMO

Regular measurement of realized genetic gain allows plant breeders to assess and review the effectiveness of their strategies, allocate resources efficiently, and make informed decisions throughout the breeding process. Realized genetic gain estimation requires separating genetic trends from nongenetic trends using the linear mixed model (LMM) on historical multi-environment trial data. The LMM, accounting for the year effect, experimental designs, and heterogeneous residual variances, estimates best linear unbiased estimators of genotypes and regresses them on their years of origin. An illustrative example of estimating realized genetic gain was provided by analyzing historical data on fresh cassava (Manihot esculenta Crantz) yield in West Africa (https://github.com/Biometrics-IITA/Estimating-Realized-Genetic-Gain). This approach can serve as a model applicable to other crops and regions. Modernization of breeding programs is necessary to maximize the rate of genetic gain. This can be achieved by adopting genomics to enable faster breeding, accurate selection, and improved traits through genomic selection and gene editing. Tracking operational costs, establishing robust, digitalized data management and analytics systems, and developing effective varietal selection processes based on customer insights are also crucial for success. Capacity building and collaboration of breeding programs and institutions also play a significant role in accelerating genetic gains.


Assuntos
Manihot , Melhoramento Vegetal , Melhoramento Vegetal/métodos , Manihot/genética , África Subsaariana , Produtos Agrícolas/genética , Genótipo , Modelos Genéticos
4.
Plant Genome ; 17(2): e20437, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379199

RESUMO

Drought represents a significant production challenge to maize farmers in West and Central Africa, causing substantial economic losses. Breeders at the International Institute of Tropical Agriculture have therefore been developing drought-tolerant maize varieties to attain high grain yields in rainfed maize production zones. The present review provides a historical overview of the approaches used and progress made in developing drought-tolerant hybrids over the years. Breeders made a shift from a wide area testing approach, to the use of managed screening sites, to precisely control the intensity, and timing of drought stress for developing drought-tolerant maize varieties. These sites coupled with the use of molecular markers allowed choosing suitable donors with drought-adaptive alleles for integration into existing elite maize lines to generate new drought-tolerant inbred lines. These elite maize inbred lines have then been used to develop hybrids with enhanced tolerance to drought. Genetic gains estimates were made using performance data of drought-tolerant maize hybrids evaluated in regional trials for 11 years under managed drought stress, well-watered conditions, and across diverse rainfed environments. The results found significant linear annual yield gains of 32.72 kg ha-1 under managed drought stress, 38.29 kg ha-1 under well-watered conditions, and 66.57 kg ha-1 across multiple rainfed field environments. Promising hybrids that deliver high grain yields were also identified for areas affected by drought and variable rainfed growing conditions. The significant genetic correlations found among the three growing conditions highlight the potential to exploit the available genetic resources and modern tools to further enhance tolerance to drought in hybrids.


Assuntos
Secas , Melhoramento Vegetal , Zea mays , Zea mays/genética , Zea mays/fisiologia , África Central , África Ocidental , Clima Tropical , Adaptação Fisiológica/genética , Hibridização Genética
5.
PLoS One ; 18(2): e0281075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36745665

RESUMO

Combining ability studies under low soil P conditions provides useful information on the inheritance of important traits to improve soybean for low P tolerance. The study aimed at determining the combining ability and gene actions of biomass yield and root traits in soybean under low phosphorus conditions. Nine parental genotypes and their 36 half diallel F2/F3 progenies were evaluated at two locations in Ethiopia on soils of low P availability. Highly significant (P<0.01) general combining ability (GCA) were found for all the traits and specific combining ability (SCA) for root dry weight and root fresh weight; while the SCA effects of all the rest of the traits were significant (P<0.05). The higher relative contributions of GCA over SCA revealed the preponderance of additive gene action in the inheritance of biomass yield, root dry weight, biomass dry weight, root volume, and root fresh weight with respective relative GCA:SCA contributions of (60.6, 39.4), (50.4, 49.6), (54.9, 45.1), (51.1, 48.9), and (52.1, 47.9); while the narrow-sense heritability was high (34.3%) only for biomass yield. Hardee-1 displayed significant (P<0.05) and positive GCA effects for most of the studied traits, and several crosses involving this parent showed superior performances. The traits i.e., biomass yield, biomass dry weight, root volume and root fresh weight showed highly (P<0.001) correlation with grain yield. Thus, breeding programs aiming to improve soybean for biomass yield and root traits under low-P condition can use Hardee-1 as a parent.


Assuntos
Glycine max , Solo , Glycine max/genética , Biomassa , Etiópia , Melhoramento Vegetal , Fósforo
6.
J Sci Food Agric ; 96(1): 287-94, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25641316

RESUMO

BACKGROUND: Pro-vitamin A-biofortified maize snacks with added leafy vegetable may have a potential as nutritious and health-promoting products, especially in addressing vitamin A deficiency, which is prevalent in developing regions. The objective of the study was to determine the effects of adding amaranth leaf powder on the physical, antioxidant properties and pro-vitamin A content of extruded pro-vitamin A-biofortified maize snacks. Extruded snacks were processed using four pro-vitamin A-biofortified maize varieties that were composited with amaranth leaf powder at 0%, 1% and 3% (w/w) substitution levels. RESULTS: At higher amaranth concentration, the expansion ratio of the snacks decreased, while their hardness increased by as much as 93%. The physical quality of the snacks may therefore need improvement. As amaranth was increased, the phenolic content and antioxidant activity of the snacks increased as well as the pro-vitamin A content. CONCLUSION: Pro-vitamin A-biofortified maize with added amaranth has a potential for use in nutritious and healthy extruded snacks. There are limited studies reporting on processing pro-vitamin A maize with complementary plant foods, which is common with white maize in southern Africa; thus the current study serves as a baseline.


Assuntos
Amaranthus/química , Antioxidantes/análise , Alimentos Fortificados/análise , Fenóis/análise , Lanches , Vitamina A/análise , Zea mays/química , Antioxidantes/farmacologia , Dieta , Manipulação de Alimentos/métodos , Dureza , Humanos , Fenóis/farmacologia , Folhas de Planta/química , Preparações de Plantas/química , Verduras/química , Vitamina A/farmacologia , Vitaminas/análise , Vitaminas/farmacologia
7.
J Food Sci Technol ; 51(4): 634-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24741156

RESUMO

Provitamin A-biofortified maize may contribute to alleviating vitamin A deficiency (VAD), in developing countries. However, processing the maize into food products may reduce its provitamin A content. The aims of this study were to determine the composition of provitamin A carotenoids in biofortified maize varieties as well as to assess their retention during processing of popular maize foods consumed in KwaZulu-Natal, South Africa. The non-provitamin A carotenoid, zeaxanthin and the provitamin A carotenoids, ß-cryptoxanthin, and trans and cis isomers of ß-carotene, and other unidentified trans and cis isomers of ß-carotene were detected in varying concentrations in the maize. Milling provitamin A-biofortified maize into mealie meal resulted in a higher retention of carotenoids compared to milling into samp. The highest retention of provitamin A carotenoids was observed in cooked phutu and cooked samp, whilst cooking into thin porridge resulted in the lowest retention of provitamin A carotenoids. In phutu, 96.6 ± 20.3% ß-cryptoxanthin and 95.5 ± 13.6% of the ß-carotene were retained after cooking. In samp, 91.9 ± 12.0% ß-cryptoxanthin and 100.1 ± 8.8% ß-carotene; and in thin porridge, 65.8 ± 4.6% ß-cryptoxanthin and 74.7 ± 3.0% ß-carotene were retained after cooking. This study demonstrates that provitamin A retention in maize is affected by the cooking method (and hence cooked food form) and therefore cooking methods that result in a good retention of provitamin A need to be identified and recommended.

8.
J Nematol ; 43(3-4): 209-19, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23429435

RESUMO

Plant-parasitic nematodes are present on maize but resistant genotypes have not been identified in Uganda. This study was aimed at determining the level of nematode resistance among F(1) hybrids, and to estimate grain yield, heterosis and yield losses associated with maize hybrids under nematode infestation. The 30 F(1) hybrids and two local checks were evaluated in a split plot design with nematode treatment (nematode infested versus nematicide treated) as the whole plot factor, and the hybrids as subplot factors arranged in an 8 x 4 alpha-lattice design. The experiment was conducted simultaneously at three sites. The hybrids were also evaluated in a split plot design under greenhouse conditions at IITA-Namulonge. Results revealed 24 P. zeae susceptible hybrids compared to only six P. zeae resistant hybrids. Grain yield across sites was higher by about 400 kg ha(-1) under nematicide treatment than under nematode infestation. The nematode tolerant/resistant hybrids exhibited yields ranging from 5.0 to 8.4 t ha(-1) compared to 5.0 t ha(-1) obtained from the best check. Grain yield loss was up to 28% among susceptible hybrids, indicating substantial economic yield losses due to nematodes. Under field conditions, desired heterosis was recorded on 18 hybrids for P. zeae, and on three hybrids for Meloidogyne spp. Under nematode infestation, only 16 hybrids had higher relative yield compared to the mean of both checks, the best check and the trial mean, whereas it was 20 hybrids under nematicide treated plots. Overall, most outstanding hybrids under nematode infestation were CML395/MP709, CML312/5057, CML312/CML206, CML312/CML444, CML395/CML312 and CML312/CML395. Therefore, grain yield loss due to nematodes is existent but can be significantly reduced by growing nematode resistant hybrids.

9.
Int J Food Microbiol ; 141(3): 213-21, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20626099

RESUMO

Maize ear rots reduce grain yield and quality with implication on food security and health. Some of the pathogenic fungi produce mycotoxins in maize grain posing a health risk to humans and livestock. Unfortunately, the levels of ear rot and mycotoxin infection in grain produced by subsistence farmers in sub-Saharan countries are not known. A survey was thus conducted to determine the prevalence of the ear rot problem and levels of mycotoxins in maize grain. A total of 114 farmsteads were randomly sampled from 11 districts in Lusaka and southern provinces in Zambia during 2006. Ten randomly picked cobs were examined per farmstead and the ear rot disease incidence and severity were estimated on site. This was followed by the standard seed health testing procedures for fungal isolation in the laboratory. Results indicated that the dominant ear rots were caused by Fusarium and Stenocarpella. Incidence of Fusarium verticillioides ranged from 2 to 21%, whereas that of Stenocarpella maydis reached 37% on ear rot diseased maize grain. In addition, 2-7% F. verticillioides, and 3-18% Aspergillus flavus, respectively, were recovered from seemingly healthy maize grain. The mean rank of fungal species, from highest to lowest, was F. verticillioides, S. maydis, A. flavus, Fusarium graminearum, Aspergillus niger, Penicillium spp., Botrydiplodia spp., and Cladosporium spp. The direct competitive ELISA-test indicated higher levels of fumonisins than aflatoxins in pre-harvest maize grain samples. The concentration of fumonisins from six districts, and aflatoxin from two districts, was 10-fold higher than 2 ppm and far higher than 2 ppb maximum daily intake recommended by the FAO/WHO. The study therefore suggested that subsistence farmers and consumers in this part of Zambia, and maybe also in similar environments in sub-Saharan Africa, might be exposed to dangerous levels of mycotoxins due to the high levels of ear rot infections in maize grain.


Assuntos
Fungos/isolamento & purificação , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Fungos/classificação , Fungos/metabolismo , Zâmbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...