Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 20460, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227598

RESUMO

Lumpy skin disease (LSD) is one of the most economically significant viral diseases of cattle caused by the Lumpy Skin Disease Virus (LSDV), classified as a member of the genus Capripoxvirus and belongs to the family Poxviridae. Nodular skin samples were collected from clinically sick cattle in the districts of Amuru and Wara Jarso Ethiopia to isolate LSD virus. The virus was isolated using primary lamb testis and kidney cells. The isolated LSDV was infected into a healthy calf while maintaining the necessary biosecurity measures to generate skin lesions and to assess disease progression using postmortem examinations. On the fourth day after virus inoculation, the calf developed typical LSD skin nodules with increased rectal temperature, which lasted until the 12th day, when they began to decrease. Viral shedding was detected in nasal, oral, and conjunctival swabs from 6 to 14 days after infection using real-time PCR. Post-mortem tissue specimens tested positive for LSD virus using real-time PCR and virus isolation. This study showed that LSDV were responsible for the LSD outbreaks, and the appearance of typical skin nodules accompanied by fever (> 39.5 °C) defined the virus's virulent status. The experimental infection with the isolated infectious LSDV could serve as a platform for future vaccine evaluation study using an LSDV challenge model.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/genética , Doença Nodular Cutânea/virologia , Doença Nodular Cutânea/patologia , Bovinos , Pele/virologia , Pele/patologia , Eliminação de Partículas Virais , Etiópia , Ovinos , Masculino
2.
Vet Med Int ; 2024: 6038724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184947

RESUMO

Lumpy skin disease (LSD) is an economically significant viral disease because of its high morbidity and high production loss. Vaccination of cattle using LSD vaccines is a more effective disease preventive and control strategy in endemic countries such as Ethiopia. Despite high vaccination coverage, there is an increasing number of field reports of the disease outbreaks. Thus, an observational study was designed to investigate disease, characterize the disease-causing agent, and isolate the virus from a local isolate for future vaccine development. Wera Jarso and Amuru districts in North West Oromia were chosen based on outbreak occurrence. For this study skin, 13 pooled biopsy samples were collected from affected cattle. In this outbreak investigation, the morbidity rate was 6.50%, the mortality rate was 0.50%, and the case fatality rate was 7.77%. The virus was isolated from all skin samples on both lamb testis and lamb kidney primary cells and confirmed to be LSDV using conventional and real-time PCR genotyping. Therefore, after each suspected LSD outbreak, a molecular test should be carried out to confirm the cause of the disease, targeting the previously suggested RPO30 or GPCR genes. Further studies targeting more regions and outbreaks, including full genome sequencing to check for genetic differences between the field viruses and vaccine strains, are recommended.

3.
Viruses ; 16(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39205223

RESUMO

Newcastle disease (ND) is caused by virulent strains of avian paramyxovirus type 1, also known as Newcastle disease virus (NDV). Despite vaccination, the frequency of reported outbreaks in Ethiopia has increased. From January to June 2022, an active outbreak investigation was conducted in six commercial chicken farms across areas of central Ethiopia to identify the circulating NDV strains. Thirty pooled tissue specimens were collected from chickens suspected of being infected with NDV. A questionnaire survey of farm owners and veterinarians was also carried out to collect information on the farms and the outbreak status. NDV was isolated using specific-pathogen-free (SPF)-embryonated chicken eggs and detected using haemagglutination and the reverse transcriptase-polymerase chain reaction (RT-PCR). The genotype and virulence of field NDV isolates were determined using phylogenetic analysis of fusion (F) protein gene sequences and the mean death time (MDT) test in SPF-embryonated chicken eggs. The questionnaire results revealed that ND caused morbidity (23.1%), mortality (16.3%), case fatality (70.8%), and significant economic losses. Eleven of thirty tissue specimens tested positive for NDV using haemagglutination and RT-PCR. The MDT testing and sequence analysis revealed the presence of virulent NDV classified as genotype VII of class II velogenic pathotype and distinct from locally used vaccine strains (genotype II). The amino acid sequences of the current virulent NDV fusion protein cleavage site motif revealed 112RRQKR↓F117, unlike the locally used avirulent vaccine strains (112GRQGR↓L117). The epidemiological data, MDT results, cleavage site sequence, and phylogenetic analysis all indicated that the present NDV isolates were virulent. The four NDV sequences were deposited in GenBank with accession numbers F gene (PP726912-15) and M gene (PP726916-19). The genetic difference between avirulent vaccine strains and circulating virulent NDV could explain the low level of protection provided by locally used vaccines. Further studies are needed to better understand the circulating NDV genotypes in different production systems.


Assuntos
Galinhas , Surtos de Doenças , Genótipo , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/patogenicidade , Galinhas/virologia , Etiópia/epidemiologia , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Virulência , Fazendas , Proteínas Virais de Fusão/genética
4.
Front Immunol ; 15: 1392681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835751

RESUMO

Background: Pasteurella multocida is a bacterial pathogen that causes a variety of infections across diverse animal species, with one of the most devastating associated diseases being hemorrhagic septicemia. Outbreaks of hemorrhagic septicemia in cattle and buffaloes are marked by rapid progression and high mortality. These infections have particularly harmful socio-economic impacts on small holder farmers in Africa and Asia who are heavily reliant on a small number of animals kept as a means of subsistence for milk and draft power purposes. A novel vaccine target, PmSLP-3, has been identified on the surface of hemorrhagic septicemia-associated strains of P. multocida and was previously shown to elicit robust protection in cattle against lethal challenge with a serogroup B strain. Methods: Here, we further investigate the protective efficacy of this surface lipoprotein, including evaluating the immunogenicity and protection upon formulation with a variety of adjuvants in both mice and cattle. Results: PmSLP-3 formulated with Montanide ISA 61 elicited the highest level of serum and mucosal IgG, elicited long-lasting serum antibodies, and was fully protective against serogroup B challenge. Studies were then performed to identify the minimum number of doses required and the needed protein quantity to maintain protection. Duration studies were performed in cattle, demonstrating sustained serum IgG titres for 3 years after two doses of vaccine and full protection against lethal serogroup B challenge at 7 months after a single vaccine dose. Finally, a serogroup E challenge study was performed, demonstrating that PmSLP-3 vaccine can provide protection against challenge by the two serogroups responsible for hemorrhagic septicemia. Conclusion: Together, these data indicate that PmSLP-3 formulated with Montanide ISA 61 is an immunogenic and protective vaccine against hemorrhagic septicemia-causing P. multocida strains in cattle.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Doenças dos Bovinos , Septicemia Hemorrágica , Pasteurella multocida , Animais , Bovinos , Pasteurella multocida/imunologia , Septicemia Hemorrágica/prevenção & controle , Septicemia Hemorrágica/veterinária , Septicemia Hemorrágica/imunologia , Septicemia Hemorrágica/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Camundongos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Feminino , Sorogrupo , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/microbiologia , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , Vacinação
5.
Microorganisms ; 12(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674711

RESUMO

A cross-sectional study was conducted to assess the prevalence, molecular detection, and antimicrobial resistance of Salmonella isolates within 162 poultry farms in selected urban and peri-urban areas of central Ethiopia. A total of 1515 samples, including cloacal swabs (n = 763), fresh fecal droppings (n = 188), litter (n = 188), feed (n = 188), and water (n = 188), were bacteriologically tested. The molecular detection of some culture-positive isolates was performed via polymerase chain reaction (PCR) by targeting spy and sdfl genes for Salmonella Typhimurium and Salmonella Enteritidis, respectively. Risk factors for the occurrence of the bacterial isolates were assessed. Antimicrobial susceptibility testing of PCR-confirmed Salmonella isolates was conducted using 12 antibiotics. In this study, it was observed that 50.6% of the farms were positive for Salmonella. The overall sample-level prevalence of Salmonella was 14.4%. Among the analyzed risk factors, the type of production, breed, and sample type demonstrated a statistically significant association (p < 0.05) with the bacteriological prevalence of Salmonella. The PCR test disclosed that 45.5% (15/33) and 23.3% (10/43) of the isolates were positive for genes of Salmonella Typhimurium and Salmonella Enteritidis, respectively. The antimicrobial susceptibility test disclosed multi-drug resistance to ten of the tested antibiotics that belong to different classes. Substantial isolation of Salmonella Typhimurium and Salmonella Enteritidis in poultry and on poultry farms, along with the existence of multi-drug resistant isolates, poses an alarming risk of zoonotic and food safety issues. Hence, routine flock testing, farm surveillance, biosecurity intervention, stringent antimicrobial use regulations, and policy support for the sector are highly needed.

6.
Virol J ; 20(1): 299, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102688

RESUMO

Foot-and-mouth disease (FMD) is a contagious viral disease that affects the livelihoods and productivity of livestock farmers in endemic regions. It can infect various domestic and wild animals with cloven hooves and is caused by a virus belonging to the genus Aphthovirus and family Picornaviridae, which has seven different serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia-1. This paper aims to provide a comprehensive overview of the molecular epidemiology, economic impact, diagnosis, and control measures of FMD in Ethiopia in comparison with the global situation. The genetic and antigenic diversity of FMD viruses requires a thorough understanding for developing and applying effective control strategies in endemic areas. FMD has direct and indirect economic consequences on animal production. In Ethiopia, FMD outbreaks have led to millions of USD losses due to the restriction or rejection of livestock products in the international market. Therefore, in endemic areas, disease control depends on vaccinations to prevent animals from developing clinical disease. However, in Ethiopia, due to the presence of diverse antigenic serotypes of FMD viruses, regular and extensive molecular investigation of new field isolates is necessary to perform vaccine-matching studies to evaluate the protective potential of the vaccine strain in the country.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Vacinas , Animais , Bovinos , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Etiópia/epidemiologia , Epidemiologia Molecular , Surtos de Doenças , Sorogrupo , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle
7.
BMC Microbiol ; 23(1): 216, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563597

RESUMO

BACKGROUND: Brucellosis is an economically devastating animal disease and has public health concern. Serological methods such as Rose Bengal Plate Test (RBPT), Complement Fixation Test (CFT), and Indirect-Enzyme-Linked Immunosorbent Assay (I-ELISA) have been used to detect brucellosis. However, there is limited comparative evaluation studies and lack of molecular confirmation of the causative agents in the study areas. The study was aimed to compare RBPT, I-ELISA, CFT, and confirmation using Polymerase Chain Reaction (PCR). A total of 2317 sera samples were collected from brucellosis-affected areas of Ethiopia with no vaccination history. All sera were subjected to comparative serological assays. Post-cross tabulation, sensitivity, and specificity were determined using Receiver Operating Characteristics (ROC) curve analysis software. PCR was performed on 54 seropositive samples using genus- and species-specific primers. RESULTS: Among the 2317 sera tested for comparative serological assays, 189 (8.16%) were positive for RBPT, 191 (8.24%) for I-ELISA, and 48 (2.07%) for CFT. Sensitivity to RBPT was 100% (95%) in shoats and 74% (95%) in cattle. Specificity on RBPT was 98.69% (95%), 99.28% (95%), 100% (95%) in sheep, goats, and cattle, respectively. CFT sensitivity was 4 (95%) in sheep, 9.65 (95%) goats, and 72 (95%) cattle. Specificity on CFT was 100% (95%) for sheep, goats, and cattle. A 223bp Brucella genus-specific and 156bp B. abortus species-specific detected. However, B. melitensis not detected. CONCLUSION: In this study, I-ELISA was the most sensitive and specific test. RBPT detected all Brucellosis-infected sheep and goats; nevertheless, it showed false positive in sheep and goats and false negative in cattle. The presence of B. abortus in small and large ruminants was confirmed by PCR. This is the first report of B. abortus detection in small ruminant in Ethiopia. B.abortus detected in non-preferred hosts. The findings suggest further study on molecular epidemiology of Brucella species.


Assuntos
Brucella , Brucelose , Animais , Bovinos , Ovinos , Brucella/genética , Testes de Fixação de Complemento/veterinária , Rosa Bengala , Cabras , Brucelose/diagnóstico , Brucelose/veterinária , Brucelose/epidemiologia , Reação em Cadeia da Polimerase , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Antibacterianos
8.
PLoS Pathog ; 19(3): e1011249, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961851

RESUMO

Pasteurella multocida can infect a multitude of wild and domesticated animals, with infections in cattle resulting in hemorrhagic septicemia (HS) or contributing to bovine respiratory disease (BRD) complex. Current cattle vaccines against P. multocida consist of inactivated bacteria, which only offer limited and serogroup specific protection. Here, we describe a newly identified surface lipoprotein, PmSLP, that is present in nearly all annotated P. multocida strains isolated from cattle. Bovine associated variants span three of the four identified phylogenetic clusters, with PmSLP-1 and PmSLP-2 being restricted to BRD associated isolates and PmSLP-3 being restricted to isolates associated with HS. Recombinantly expressed, soluble PmSLP-1 (BRD-PmSLP) and PmSLP-3 (HS-PmSLP) vaccines were both able to provide full protection in a mouse sepsis model against the matched P. multocida strain, however no cross-protection and minimal serum IgG cross-reactivity was identified. Full protection against both challenge strains was achieved with a bivalent vaccine containing both BRD-PmSLP and HS-PmSLP, with serum IgG from immunized mice being highly reactive to both variants. Year-long stability studies with lyophilized antigen stored under various temperatures show no appreciable difference in biophysical properties or loss of efficacy in the mouse challenge model. PmSLP-1 and PmSLP-3 vaccines were each evaluated for immunogenicity in two independent cattle trials involving animals of different age ranges and breeds. In all four trials, vaccination with PmSLP resulted in an increase in antigen specific serum IgG over baseline. In a blinded cattle challenge study with a recently isolated HS strain, the matched HS-PmSLP vaccine showed strong efficacy (75-87.5% survival compared to 0% in the control group). Together, these data suggest that cattle vaccines composed of PmSLP antigens can be a practical and effective solution for preventing HS and BRD related P. multocida infections.


Assuntos
Septicemia Hemorrágica , Infecções por Pasteurella , Pasteurella multocida , Bovinos , Animais , Camundongos , Filogenia , Vacinologia , Vacinas Bacterianas , Septicemia Hemorrágica/microbiologia , Septicemia Hemorrágica/prevenção & controle , Septicemia Hemorrágica/veterinária , Modelos Animais de Doenças , Imunoglobulina G , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária
9.
Virol J ; 20(1): 45, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890573

RESUMO

Marek's disease virus (MDV) is a highly contagious, immunosuppressive, and oncogenic chicken pathogen causing marek's disease (MD). In this outbreak-based study, 70 dual-purpose chickens that originated from poultry farms in Northwest Ethiopia and suspected of MD were sampled for pathological and virological study from January 2020 to June 2020. Clinically, affected chickens showed inappetence, dyspnea, depression, shrunken combs, and paralysis of legs, wings, and neck, and death. Pathologically, single or multiple greyish white to yellow tumor-like nodular lesions of various size were appreciated in visceral organs. In addition, splenomegaly, hepatomegaly, renomegaly, and sciatic nerve enlargement were observed. Twenty-seven (27) pooled clinical samples i.e. 7 pooled spleen samples and 20 pooled feathers samples were aseptically collected. Confluent monolayer of Chicken Embryo Fibroblast cells was inoculated with a suspension of pathological samples. Of this, MDV-suggestive cytopathic effects were recorded in 5 (71.42%) and 17 (85%) pooled spleen and feather samples respectively. Molecular confirmation of pathogenic MDV was conducted using conventional PCR amplifying 318 bp of ICP4 gene of MDV-1, of which, 40.9% (9/22) tested positive. In addition, 5 PCR-positive samples from various farms were sequenced further confirming the identity of MDV. The ICP4 partial gene sequences were submitted to GenBank with the following accession numbers: OP485106, OP485107, OP485108, OP485109, and OP485110. Comparative phylogenetics showed, two of the isolates from the same site, Metema, seem to be clonal complexes forming distinct cluster. The other three isolates, two from Merawi and one from Debretabor, appear to represent distinct genotypes although the isolate from Debretabor is closer to the Metema clonal complex. On the other hand, the isolates from Merawi appeared genetically far related to the rest of the 3 isolates and clustered with Indian MDV strains included in the analysis. This study presented the first molecular evidence of MDV in chicken farms from Northwest Ethiopia. Biosecurity measures should strictly be implemented to hinder the spread of the virus. Nationwide studies on molecular characteristics of MDV isolates, their pathotypes, and estimation of the economic impact associated with the disease may help justify production and use of MD vaccines within the country.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Doença de Marek/epidemiologia , Galinhas , Etiópia/epidemiologia , Fazendas , Herpesvirus Galináceo 2/genética
10.
J Immunol Res ; 2022: 5392033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36285182

RESUMO

Infectious bursal disease (IBD) is an immunosuppressive and economically important disease of young chickens caused by infectious bursal disease virus (IBDV). The National Veterinary Institute (Bishoftu, Ethiopia) produces intermediate IBDV vaccine using primary chicken embryo fibroblast (CEF) cells, a method with technical and economical cumbersome. This study assessed the safety, immunogenicity, and efficacy of DF-1 cell line-adapted IBDV LC-75 vaccine strain in reference to the CEF-based vaccine. Confluent monolayer of DF-1 cells was infected with IBDV and cells with cytopathic effects were passaged until 3rd passage. Viral growth was confirmed using a one-step RT-PCR targeting IBDV VP2 gene. Viral titer increased from 1st passage through 3rd passage. Safety was assessed in 30 specific-pathogen-free chickens (15 chickens/group) injected with 10-fold field dose of each vaccine intraocularly and monitored for 21 days. For immunogenicity and efficacy, 60 specific-pathogen-free chickens were grouped into 3 (20 chickens/group). First and 2nd group received DF-1 cell and CEF-based IBDV vaccines, respectively. The 3rd group served as unvaccinated control. Antibody response was measured using iELISA. Chickens were challenged 4 weeks postvaccination with very virulent IBDV (vvIBDV) intraocularly and followed-up for 10 days. Vaccination did not cause any adverse reactions during the 21 days of follow-up. In addition, both vaccines induced higher antibody titer 14 and 24 days-post-vaccination as compared to unvaccinated controls (p < 0.05). Moreover, DF-1 and CEF-based IBDV LC-75 vaccines rendered a complete protection against vvIBDV. Contrarily, morbidity and mortality in unvaccinated chickens was 50% and 30%, respectively. The results indicated that DF-1 and CEF cell-based IBDV vaccines are comparably immunogenic and efficacious. Therefore, DF-1 cell-line can be considered an affordable and convenient alternative to the CEF-based approach. The suitability of DF-1 cells to grow other IBDV strains and safety of these vaccines on bursa of Fabricius should further be investigated.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vacinas Virais , Embrião de Galinha , Animais , Vírus da Doença Infecciosa da Bursa/genética , Galinhas , Bolsa de Fabricius/química , Doenças das Aves Domésticas/prevenção & controle , Anticorpos Antivirais/análise , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária , Fibroblastos , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...