Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39026874

RESUMO

ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here we show that ATG5 associates with retromer's core components VPS26, VPS29 and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.

2.
J Mol Biol ; 436(15): 168532, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479594

RESUMO

Membrane atg8ylation is a homeostatic process responding to membrane remodeling and stress signals. Membranes are atg8ylated by mammalian ATG8 ubiquitin-like proteins through a ubiquitylation-like cascade. A model has recently been put forward which posits that atg8ylation of membranes is conceptually equivalent to ubiquitylation of proteins. Like ubiquitylation, membrane atg8ylation involves E1, E2 and E3 enzymes. The E3 ligases catalyze the final step of atg8ylation of aminophospholipids in membranes. Until recently, the only known E3 ligase for membrane atg8ylation was ATG16L1 in a noncovalent complex with the ATG12-ATG5 conjugate. ATG16L1 was first identified as a factor in canonical autophagy. During canonical autophagy, the ATG16L1-based E3 ligase complex includes WIPI2, which in turn recognizes phosphatidylinositiol 3-phosphate and directs atg8ylation of autophagic phagophores. As an alternative to WIPIs, binding of ATG16L1 to the proton pump V-ATPase guides atg8ylation of endolysosomal and phagosomal membranes in response to lumenal pH changes. Recently, a new E3 complex containing TECPR1 instead of ATG16L1, has been identified that responds to sphingomyelin's presence on the cytofacial side of perturbed endolysosomal membranes. In present review, we cover the principles of membrane atg8ylation, catalog its various presentations, and provide a perspective on the growing repertoire of E3 ligase complexes directing membrane atg8ylation at diverse locations.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Humanos , Animais , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo
4.
Autophagy ; 20(2): 448-450, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37876292

RESUMO

ATG5 plays a pivotal role in membrane Atg8ylation, influencing downstream processes encompassing canonical autophagy and noncanonical processes. Remarkably, genetic ablation of ATG5 in myeloid cells leads to an exacerbated pathological state in murine models of tuberculosis, characterized by an early surge in mortality much more severe when compared to the depletion of other components involved in Atg8ylation or canonical autophagy. This study shows that in the absence of ATG5, but not other core canonical autophagy factors, endolysosomal organelles display a lysosomal hypersensitivity phenotype when subjected to damage. This is in part due to a compromised recruitment of ESCRT proteins to lysosomes in need of repair. Mechanistically, in the absence of ATG5, the ESCRT protein PDCD6IP/ALIX is sequestered by the alternative conjugate ATG12-ATG3, contributing to excessive exocytic processes while not being available for lysosomal repair. Specifically, this condition increases secretion of extracellular vesicles and particles, and leads to excessive degranulation in neutrophils. Our findings uncover unique functions of ATG5 outside of the autophagy and Atg8ylation paradigm. This finding is of in vivo relevance for tuberculosis pathogenesis as modeled in mice.Abbreviations: Atg5: autophagy related 5; ESCRT: endosomal sorting complex required for transport; EVPs: extracellular vesicles and particles; FPR1: formyl peptide receptor 1; LyHYP: lysosomal hypersensitivity phenotype; LysoIP: lysosome immunopurification; Mtb: Mycobacterium tuberculosis; ORF3a: open reading frame 3a protein; PDCD6IP/ALIX: programmed cell death 6 interacting protein; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2, TFEB: transcription factor EB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia/metabolismo , Tuberculose/microbiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lisossomos/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37901138

RESUMO

Nearly two decades have passed since the first report on autophagy acting as a cell-autonomous defense against Mycobacterium tuberculosis. This helped usher a new area of research within the field of host-pathogen interactions and led to the recognition of autophagy as an immunological mechanism. Interest grew in the fundamental mechanisms of antimicrobial autophagy and in the prophylactic and therapeutic potential for tuberculosis. However, puzzling in vivo data have begun to emerge in murine models of M. tuberculosis infection. The control of infection in mice affirmed the effects of certain autophagy genes, specifically ATG5, but not of other ATGs. Recent studies with a more complete inactivation of ATG genes now show that multiple ATG genes are indeed necessary for protection against M. tuberculosis. These particular ATG genes are involved in the process of membrane atg8ylation. Atg8ylation in mammalian cells is a broad response to membrane stress, damage and remodeling of which canonical autophagy is one of the multiple downstream outputs. The current developments clarify the controversies and open new avenues for both fundamental and translational studies.

6.
EMBO J ; 42(14): e112845, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272163

RESUMO

The canonical autophagy pathway in mammalian cells sequesters diverse cytoplasmic cargo within the double membrane autophagosomes that eventually convert into degradative compartments via fusion with endolysosomal intermediates. Here, we report that autophagosomal membranes show permeability in cells lacking principal ATG8 proteins (mATG8s) and are unable to mature into autolysosomes. Using a combination of methods including a novel in vitro assay to measure membrane sealing, we uncovered a previously unappreciated function of mATG8s to maintain autophagosomal membranes in a sealed state. The mATG8 proteins GABARAP and LC3A bind to key ESCRT-I components contributing, along with other ESCRTs, to the integrity and imperviousness of autophagic membranes. Autophagic organelles in cells lacking mATG8s are permeant, are arrested as amphisomes, and do not progress to functional autolysosomes. Thus, autophagosomal organelles need to be maintained in a sealed state in order to become lytic autolysosomes.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Animais , Humanos , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Autofagossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mamíferos
8.
Dev Cell ; 58(10): 866-884.e8, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37054706

RESUMO

ATG5 is a part of the E3 ligase directing lipidation of ATG8 proteins, a process central to membrane atg8ylation and canonical autophagy. Loss of Atg5 in myeloid cells causes early mortality in murine models of tuberculosis. This in vivo phenotype is specific to ATG5. Here, we show using human cell lines that absence of ATG5, but not of other ATGs directing canonical autophagy, promotes lysosomal exocytosis and secretion of extracellular vesicles and, in murine Atg5fl/fl LysM-Cre neutrophils, their excessive degranulation. This is due to lysosomal disrepair in ATG5 knockout cells and the sequestration by an alternative conjugation complex, ATG12-ATG3, of ESCRT protein ALIX, which acts in membrane repair and exosome secretion. These findings reveal a previously undescribed function of ATG5 in its host-protective role in murine experimental models of tuberculosis and emphasize the significance of the branching aspects of the atg8ylation conjugation cascade beyond the canonical autophagy.


Assuntos
Proteínas Associadas aos Microtúbulos , Tuberculose , Humanos , Animais , Camundongos , Proteínas Relacionadas à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Autofagia
9.
Autophagy ; 19(8): 2391-2392, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36571474

RESUMO

The precursors to mammalian autophagosomes originate from preexisting membranes contributed by a number of sources, and subsequently enlarge through intermembrane lipid transfer, then close to sequester the cargo, and merge with lysosomes to degrade the cargo. Using cellular and in vitro membrane fusion analyses coupled with proteomic and biochemical studies we show that autophagosomes are formed from a hybrid membrane compartment referred to as a prophagophore or HyPAS (hybrid preautophagosomal structure). HyPAS is initially LC3-negative and subsequently becomes an LC3-positive phagophore. The prophagophore emerges through fusion of RB1CC1/FIP200-containing vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes. A specialized Ca2+-responsive apparatus controls prophagophore biogenesis and can be modulated by pharmacological agents such as SIGMAR1 agonists and antagonists including chloroquine. Autophagic prophagophore formation is inhibited during SARS-CoV-2 infection and is recapitulated by expression of SARS-CoV-2 nsp6. These findings show that mammalian autophagosomal prophagophores emerge via the convergence of secretory and endosomal pathways in a process that is targeted by microbial factors including coronaviral membrane proteins.Abbreviations: CLEM, correlative light and electron microscopy; CQ, chloroquine; HyPAS, hybrid preautophagosomal; strcuture/prophagophore; LC3, microtubule associated protein 1 light chain 3; RUPEX, a combination of RUSH and APEX2 systems; SARS-CoV-2, SARS-CoV-2 virus, causative agent of COVID19.


Assuntos
Autofagossomos , COVID-19 , Humanos , Animais , Autofagossomos/metabolismo , Autofagia , Proteômica , SARS-CoV-2 , Mamíferos
10.
Autophagy ; 19(6): 1893-1895, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36394332

RESUMO

The functions of mammalian Atg8 proteins (mATG8s) expand beyond canonical autophagy and include processes collectively referred to as Atg8ylation. Global modulation of protein synthesis under stress conditions is governed by MTOR and liquid-liquid phase separated condensates containing ribonucleoprotein particles known as stress granules (SGs). We report that lysosomal damage induces SGs acting as a hitherto unappreciated inhibitor of protein translation via EIF2A/eIF2α phosphorylation while favoring an ATF4-dependent integrated stress response. SGs are induced by lysosome-damaging agents, SARS-CoV-2 open reading frame 3a protein (ORF3a) expression, Mycobacterium tuberculosis infection, and exposure to proteopathic MAPT/tau. Proteomic studies revealed recruitment to damaged lysosomes of the core SG proteins NUFIP2 and G3BP1 along with the GABARAPs of the mATG8 family. The recruitment of these proteins is independent of SG condensates or canonical autophagy. GABARAPs interact directly with NUFIP2 and G3BP1 whereas Atg8ylation is needed for their recruitment to damaged lysosomes. At the lysosome, NUFIP2 contributes to MTOR inactivation together with LGALS8 (galectin 8) via the Ragulator-RRAGA-RRAGB complex. The separable functions of NUFIP2 and G3BP1 in SG formation vis-a-vis their role in MTOR inactivation are governed by GABARAP and Atg8ylation. Thus, cells employ membrane Atg8ylation to control and coordinate SG and MTOR responses to lysosomal damage.Abbreviations: Atg8: autophagy related 8; ATG: autophagy related; ATF4: activating transcription factor 4; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; GABARAP: GABA type A receptor-associated protein; G3BP1: G3BP stress granule assembly factor 1; LLOMe: L-leucyl-L-leucine methyl ester; LysoIP: lysosome immunopurification; mRNA: messenger ribonucleic acid; MTOR: mechanistic target of rapamycin kinase; NUFIP2: nuclear FMR1 interacting protein 2; ORF3a: open reading frame 3a protein; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SG: stress granule; TIA1: TIA1 cytotoxic granule associated RNA binding protein.


Assuntos
COVID-19 , DNA Helicases , Animais , Humanos , DNA Helicases/metabolismo , Grânulos de Estresse , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteômica , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Autofagia , SARS-CoV-2 , Serina-Treonina Quinases TOR/metabolismo , Lisossomos/metabolismo , Grânulos Citoplasmáticos/metabolismo , Mamíferos/metabolismo , Galectinas/metabolismo
11.
Autophagy Rep ; 2(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38214012

RESUMO

The Atg8 family of ubiquitin-like proteins play pivotal roles in autophagy and other processes involving vesicle fusion and transport where the lysosome/vacuole is the end station. Nuclear roles of Atg8 proteins are also emerging. Here, we review the structural and functional features of Atg8 family proteins and their protein-protein interaction modes in model organisms such as yeast, Arabidopsis, C. elegans and Drosophila to humans. Although varying in number of homologs, from one in yeast to seven in humans, and more than ten in some plants, there is a strong evolutionary conservation of structural features and interaction modes. The most prominent interaction mode is between the LC3 interacting region (LIR), also called Atg8 interacting motif (AIM), binding to the LIR docking site (LDS) in Atg8 homologs. There are variants of these motifs like "half-LIRs" and helical LIRs. We discuss details of the binding modes and how selectivity is achieved as well as the role of multivalent LIR-LDS interactions in selective autophagy. A number of LIR-LDS interactions are known to be regulated by phosphorylation. New methods to predict LIR motifs in proteins have emerged that will aid in discovery and analyses. There are also other interaction surfaces than the LDS becoming known where we presently lack detailed structural information, like the N-terminal arm region and the UIM-docking site (UDS). More interaction modes are likely to be discovered in future studies.

12.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36179369

RESUMO

We report that lysosomal damage is a hitherto unknown inducer of stress granule (SG) formation and that the process termed membrane atg8ylation coordinates SG formation with mTOR inactivation during lysosomal stress. SGs were induced by lysosome-damaging agents including SARS-CoV-2ORF3a, Mycobacterium tuberculosis, and proteopathic tau. During damage, mammalian ATG8s directly interacted with the core SG proteins NUFIP2 and G3BP1. Atg8ylation was needed for their recruitment to damaged lysosomes independently of SG condensates whereupon NUFIP2 contributed to mTOR inactivation via the Ragulator-RagA/B complex. Thus, cells employ membrane atg8ylation to control and coordinate SG and mTOR responses to lysosomal damage.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , DNA Helicases , RNA Helicases , Animais , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Grânulos de Estresse , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
J Cell Biol ; 221(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35699692

RESUMO

The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.


Assuntos
Autofagia , Ubiquitinas , Animais , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Ubiquitinação , Ubiquitinas/genética
14.
Autophagy ; 18(2): 283-292, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34036900

RESUMO

The sensu stricto autophagy, macroautophagy, is considered to be both a metabolic process as well as a bona fide quality control process. The question as to how these two aspects of autophagy are coordinated and whether and why they overlap has implications for fundamental aspects, pathophysiological effects, and pharmacological manipulation of autophagy. At the top of the regulatory cascade controlling autophagy are master regulators of cellular metabolism, such as MTOR and AMPK, which render the system responsive to amino acid and glucose starvation. At the other end exists a variety of specific autophagy receptors, engaged in the selective removal of a diverse array of intracellular targets, from protein aggregates/condensates to whole organelles such as mitochondria, ER, peroxisomes, lysosomes and lipid droplets. Are the roles of autophagy in metabolism and quality control mutually exclusive, independent or interlocked? How are priorities established? What are the molecular links between both phenomena? This article will provide a starting point to formulate these questions, the responses to which should be taken into consideration in future autophagy-based interventions.


Assuntos
Autofagia , Lisossomos , Autofagia/fisiologia , Lisossomos/metabolismo , Macroautofagia , Mitocôndrias/metabolismo , Peroxissomos/metabolismo
15.
J Crohns Colitis ; 16(2): 259-274, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34374750

RESUMO

Intestinal myeloid cells play a critical role in balancing intestinal homeostasis and inflammation. Here, we report that expression of the autophagy-related 5 [Atg5] protein in myeloid cells prevents dysbiosis and excessive intestinal inflammation by limiting IL-12 production. Mice with a selective genetic deletion of Atg5 in myeloid cells [Atg5ΔMye] showed signs of dysbiosis preceding colitis, and exhibited severe intestinal inflammation upon colitis induction that was characterised by increased IFNγ production. The exacerbated colitis was linked to excess IL-12 secretion from Atg5-deficient myeloid cells and gut dysbiosis. Restoration of the intestinal microbiota or genetic deletion of IL-12 in Atg5ΔMye mice attenuated the intestinal inflammation in Atg5ΔMye mice. Additionally, Atg5 functions to limit IL-12 secretion through modulation of late endosome [LE] acidity. Last, the autophagy cargo receptor NBR1, which accumulates in Atg5-deficient cells, played a role by delivering IL-12 to LE. In summary, Atg5 expression in intestinal myeloid cells acts as an anti-inflammatory brake to regulate IL-12, thus preventing dysbiosis and uncontrolled IFNγ-driven intestinal inflammation.


Assuntos
Colite , Disbiose , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Colite/induzido quimicamente , Colite/prevenção & controle , Inflamação/metabolismo , Interleucina-12 , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL
16.
Cell ; 184(24): 5950-5969.e22, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34741801

RESUMO

The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.


Assuntos
Autofagossomos/virologia , COVID-19/virologia , Autofagia , COVID-19/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Endossomos/fisiologia , Endossomos/virologia , Complexo de Golgi/fisiologia , Células HEK293 , Células HeLa , Humanos , Fusão de Membrana , Microscopia Confocal , Fagossomos/metabolismo , Fagossomos/virologia , Proteínas Qa-SNARE/biossíntese , Receptores sigma/biossíntese , SARS-CoV-2 , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Sinaptotagminas/biossíntese , Receptor Sigma-1
17.
Dis Model Mech ; 14(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486033

RESUMO

Tuberculosis (TB) treatment regimens are lengthy, causing non-adherence to treatment. Inadequate treatment can lead to relapse and the development of drug resistance TB. Furthermore, patients often exhibit residual lung damage even after cure, increasing the risk for relapse and development of other chronic respiratory illnesses. Host-directed therapeutics are emerging as an attractive means to augment the success of TB treatment. In this study, we used C3HeB/FeJ mice as an experimental model to investigate the potential role of rapamycin, a mammalian target of rapamycin inhibitor, as an adjunctive therapy candidate during the treatment of Mycobacterium tuberculosis infection with moxifloxacin. We report that administration of rapamycin with or without moxifloxacin reduced infection-induced lung inflammation, and the number and size of caseating necrotic granulomas. Results from this study strengthen the potential use of rapamycin and its analogs as adjunct TB therapy, and importantly underscore the utility of the C3HeB/FeJ mouse model as a preclinical tool for evaluating host-directed therapy candidates for the treatment of TB.


Assuntos
Pulmão/patologia , Sirolimo/farmacologia , Tuberculose/microbiologia , Tuberculose/patologia , Animais , Linfócitos B/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Pulmão/imunologia , Camundongos , Moxifloxacina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Necrose , Infiltração de Neutrófilos/efeitos dos fármacos , Ácidos Polimetacrílicos/farmacologia , Tuberculose/imunologia
18.
Cell Stress ; 5(9): 128-142, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34527862

RESUMO

The yeast Atg8 protein and its paralogs in mammals, mammalian Atg8s (mAtg8s), have been primarily appreciated for their participation in autophagy. However, lipidated mAtg8s, including the most frequently used autophagosomal membrane marker LC3B, are found on cellular membranes other than autophagosomes. Here we put forward a hypothesis that the lipidation of mAtg8s, termed 'Atg8ylation', is a general membrane stress and remodeling response analogous to the role that ubiquitylation plays in tagging proteins. Ubiquitin and mAtg8s are related in sequence and structure, and the lipidation of mAtg8s occurs on its C-terminal glycine, akin to the C-terminal glycine of ubiquitin. Conceptually, we propose that mAtg8s and Atg8ylation are to membranes what ubiquitin and ubiquitylation are to proteins, and that, like ubiquitylation, Atg8ylation has a multitude of downstream effector outputs, one of which is autophagy.

19.
EMBO J ; 40(19): e108863, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459017

RESUMO

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de Sinais
20.
Nat Cell Biol ; 23(8): 846-858, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34257406

RESUMO

The integral membrane protein ATG9A plays a key role in autophagy. It displays a broad intracellular distribution and is present in numerous compartments, including the plasma membrane (PM). The reasons for the distribution of ATG9A to the PM and its role at the PM are not understood. Here, we show that ATG9A organizes, in concert with IQGAP1, components of the ESCRT system and uncover cooperation between ATG9A, IQGAP1 and ESCRTs in protection from PM damage. ESCRTs and ATG9A phenocopied each other in protection against PM injury. ATG9A knockouts sensitized the PM to permeabilization by a broad spectrum of microbial and endogenous agents, including gasdermin, MLKL and the MLKL-like action of coronavirus ORF3a. Thus, ATG9A engages IQGAP1 and the ESCRT system to maintain PM integrity.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Proteínas de Membrana/genética , Microscopia Confocal , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...