Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Proteins ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023312

RESUMO

Despite the ubiquity of membrane occupation recognition nexus (MORN) motifs across diverse species in both eukaryotic and prokaryotic organisms, these protein domains remain poorly characterized. Their significance is underscored in the context of the Alsin protein, implicated in the debilitating condition known as infantile-onset ascending hereditary spastic paralysis (IAHSP). Recent investigations have proposed that mutations within the Alsin MORN domain disrupt proper protein assembly, precluding the formation of the requisite tetrameric configuration essential for the protein's inherent biological activity. However, a comprehensive understanding of the relationship between the biological functions of Alsin and its three-dimensional molecular structure is hindered by the lack of available experimental structures. In this study, we employed and compared several protein structure prediction algorithms to identify a three-dimensional structure for the putative MORN of Alsin. Furthermore, inspired by experimental pieces of evidence from previous studies, we employed the developed models to predict and investigate two homo-dimeric assemblies, characterizing their stability. This study's insights into the three-dimensional structure of the Alsin MORN domain and the stability dynamics of its homo-dimeric assemblies suggest an antiparallel linear configuration stabilized by a noncovalent interaction network.

2.
NPJ Sci Food ; 8(1): 47, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054312

RESUMO

Taste perception plays a pivotal role in guiding nutrient intake and aiding in the avoidance of potentially harmful substances through five basic tastes - sweet, bitter, umami, salty, and sour. Taste perception originates from molecular interactions in the oral cavity between taste receptors and chemical tastants. Hence, the recognition of taste receptors and the subsequent perception of taste heavily rely on the physicochemical properties of food ingredients. In recent years, several advances have been made towards the development of machine learning-based algorithms to classify chemical compounds' tastes using their molecular structures. Despite the great efforts, there remains significant room for improvement in developing multi-class models to predict the entire spectrum of basic tastes. Here, we present a multi-class predictor aimed at distinguishing bitter, sweet, and umami, from other taste sensations. The development of a multi-class taste predictor paves the way for a comprehensive understanding of the chemical attributes associated with each fundamental taste. It also opens the potential for integration into the evolving realm of multi-sensory perception, which encompasses visual, tactile, and olfactory sensations to holistically characterize flavour perception. This concept holds promise for introducing innovative methodologies in the rational design of foods, including pre-determining specific tastes and engineering complementary diets to augment traditional pharmacological treatments.

3.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894136

RESUMO

This study focused on developing and evaluating a gyroscope-based step counter algorithm using inertial measurement unit (IMU) readings for precise athletic performance monitoring in soccer. The research aimed to provide reliable step detection and distance estimation tailored to soccer-specific movements, including various running speeds and directional changes. Real-time algorithms utilizing shank angular data from gyroscopes were created. Experiments were conducted on a specially designed soccer-specific testing circuit performed by 15 athletes, simulating a range of locomotion activities such as walking, jogging, and high-intensity actions. The algorithm outcome was compared with manually tagged data from a high-quality video camera-based system for validation, by assessing the agreement between the paired values using limits of agreement, concordance correlation coefficient, and further metrics. Results returned a step detection accuracy of 95.8% and a distance estimation Root Mean Square Error (RMSE) of 17.6 m over about 202 m of track. A sub-sample (N = 6) also wore two pairs of devices concurrently to evaluate inter-unit reliability. The performance analysis suggested that the algorithm was effective and reliable in tracking diverse soccer-specific movements. The proposed algorithm offered a robust and efficient solution for tracking step count and distance covered in soccer, particularly beneficial in indoor environments where global navigation satellite systems are not feasible. This advancement in sports technology widens the spectrum of tools for coaches and athletes in monitoring soccer performance.


Assuntos
Algoritmos , Desempenho Atlético , Corrida , Futebol , Futebol/fisiologia , Humanos , Desempenho Atlético/fisiologia , Corrida/fisiologia , Masculino , Adulto , Caminhada/fisiologia , Adulto Jovem
4.
Artif Intell Med ; 151: 102841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658130

RESUMO

BACKGROUND AND OBJECTIVE: In everyday clinical practice, medical decision is currently based on clinical guidelines which are often static and rigid, and do not account for population variability, while individualized, patient-oriented decision and/or treatment are the paradigm change necessary to enter into the era of precision medicine. Most of the limitations of a guideline-based system could be overcome through the adoption of Clinical Decision Support Systems (CDSSs) based on Artificial Intelligence (AI) algorithms. However, the black-box nature of AI algorithms has hampered a large adoption of AI-based CDSSs in clinical practice. In this study, an innovative AI-based method to compress AI-based prediction models into explainable, model-agnostic, and reduced decision support systems (NEAR) with application to healthcare is presented and validated. METHODS: NEAR is based on the Shapley Additive Explanations framework and can be applied to complex input models to obtain the contributions of each input feature to the output. Technically, the simplified NEAR models approximate contributions from input features using a custom library and merge them to determine the final output. Finally, NEAR estimates the confidence error associated with the single input feature contributing to the final score, making the result more interpretable. Here, NEAR is evaluated on a clinical real-world use case, the mortality prediction in patients who experienced Acute Coronary Syndrome (ACS), applying three different Machine Learning/Deep Learning models as implementation examples. RESULTS: NEAR, when applied to the ACS use case, exhibits performances like the ones of the AI-based model from which it is derived, as in the case of the Adaptive Boosting classifier, whose Area Under the Curve is not statistically different from the NEAR one, even the model's simplification. Moreover, NEAR comes with intrinsic explainability and modularity, as it can be tested on the developed web application platform (https://neardashboard.pythonanywhere.com/). CONCLUSIONS: An explainable and reliable CDSS tailored to single-patient analysis has been developed. The proposed AI-based system has the potential to be used alongside the clinical guidelines currently employed in the medical setting making them more personalized and dynamic and assisting doctors in taking their everyday clinical decisions.


Assuntos
Algoritmos , Inteligência Artificial , Sistemas de Apoio a Decisões Clínicas , Sistemas de Apoio a Decisões Clínicas/organização & administração , Humanos
5.
Biotechnol Bioeng ; 121(6): 1755-1758, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587175

RESUMO

Bitter taste involves the detection of diverse chemical compounds by a family of G protein-coupled receptors, known as taste receptor type 2 (TAS2R). It is often linked to toxins and harmful compounds and in particular bitter taste receptors participate in the regulation of glucose homeostasis, modulation of immune and inflammatory responses, and may have implications for various diseases. Human TAS2Rs are characterized by their polymorphism and differ in localization and function. Different receptors can activate various signaling pathways depending on the tissue and the ligand. However, in vitro screening of possible TAS2R ligands is costly and time-consuming. For this reason, in silico methods to predict bitterant-TAS2R interactions could be powerful tools to help in the selection of ligands and targets for experimental studies and improve our knowledge of bitter receptor roles. Machine learning (ML) is a branch of artificial intelligence that applies algorithms to large datasets to learn from patterns and make predictions. In recent years, there has been a record of numerous taste classifiers in literature, especially on bitter/non-bitter or bitter/sweet classification. However, only a few of them exploit ML to predict which TAS2R receptors could be targeted by bitter molecules. Indeed, the shortage and incompleteness of data on receptor-ligand associations in literature make this task non-trivial. In this work, we provide an overview of the state of the art dealing with this specific investigation, focusing on three ML-based models, namely BitterX (2016), BitterSweet (2019) and BitterMatch (2022). This review aims to establish the foundation for future research endeavours focused on addressing the limitations and drawbacks of existing models.


Assuntos
Aprendizado de Máquina , Receptores Acoplados a Proteínas G , Paladar , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Humanos , Ligantes
6.
Sci Rep ; 14(1): 6296, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491261

RESUMO

Protein residues within binding pockets play a critical role in determining the range of ligands that can interact with a protein, influencing its structure and function. Identifying structural similarities in proteins offers valuable insights into their function and activation mechanisms, aiding in predicting protein-ligand interactions, anticipating off-target effects, and facilitating the development of therapeutic agents. Numerous computational methods assessing global or local similarity in protein cavities have emerged, but their utilization is impeded by complexity, impractical automation for amino acid pattern searches, and an inability to evaluate the dynamics of scrutinized protein-ligand systems. Here, we present a general, automatic and unbiased computational pipeline, named VirtuousPocketome, aimed at screening huge databases of proteins for similar binding pockets starting from an interested protein-ligand complex. We demonstrate the pipeline's potential by exploring a recently-solved human bitter taste receptor, i.e. the TAS2R46, complexed with strychnine. We pinpointed 145 proteins sharing similar binding sites compared to the analysed bitter taste receptor and the enrichment analysis highlighted the related biological processes, molecular functions and cellular components. This work represents the foundation for future studies aimed at understanding the effective role of tastants outside the gustatory system: this could pave the way towards the rationalization of the diet as a supplement to standard pharmacological treatments and the design of novel tastants-inspired compounds to target other proteins involved in specific diseases or disorders. The proposed pipeline is publicly accessible, can be applied to any protein-ligand complex, and could be expanded to screen any database of protein structures.


Assuntos
Proteínas , Papilas Gustativas , Humanos , Ligantes , Sítios de Ligação , Proteínas/metabolismo , Paladar , Papilas Gustativas/metabolismo , Ligação Proteica
7.
Biomech Model Mechanobiol ; 23(2): 569-579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060156

RESUMO

The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that ß -tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different ß -tubulin isotypes.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo
8.
Bioinformatics ; 39(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326976

RESUMO

MOTIVATION: Biomarker discovery is one of the most frequent pursuits in bioinformatics and is crucial for precision medicine, disease prognosis, and drug discovery. A common challenge of biomarker discovery applications is the low ratio of samples over features for the selection of a reliable not-redundant subset of features, but despite the development of efficient tree-based classification methods, such as the extreme gradient boosting (XGBoost), this limitation is still relevant. Moreover, existing approaches for optimizing XGBoost do not deal effectively with the class imbalance nature of the biomarker discovery problems, and the presence of multiple conflicting objectives, since they focus on the training of a single-objective model. In the current work, we introduce MEvA-X, a novel hybrid ensemble for feature selection (FS) and classification, combining a niche-based multiobjective evolutionary algorithm (EA) with the XGBoost classifier. MEvA-X deploys a multiobjective EA to optimize the hyperparameters of the classifier and perform FS, identifying a set of Pareto-optimal solutions and optimizing multiple objectives, including classification and model simplicity metrics. RESULTS: The performance of the MEvA-X tool was benchmarked using one omics dataset coming from a microarray gene expression experiment, and one clinical questionnaire-based dataset combined with demographic information. MEvA-X tool outperformed the state-of-the-art methods in the balanced categorization of classes, creating multiple low-complexity models and identifying important nonredundant biomarkers. The best-performing run of MEvA-X for the prediction of weight loss using gene expression data yields a small set of blood circulatory markers which are sufficient for this precision nutrition application but need further validation. AVAILABILITY AND IMPLEMENTATION: https://github.com/PanKonstantinos/MEvA-X.


Assuntos
Comportamento de Utilização de Ferramentas , Algoritmos , Biomarcadores , Biologia Computacional
9.
Front Artif Intell ; 6: 1230383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38174109

RESUMO

Introduction: Developing efficient methods to infer relations among different faces consisting of numerous expressions or on the same face at different times (e.g., disease progression) is an open issue in imaging related research. In this study, we present a novel method for facial feature extraction, characterization, and identification based on classical computer vision coupled with deep learning and, more specifically, convolutional neural networks. Methods: We describe the hybrid face characterization system named FRetrAIval (FRAI), which is a hybrid of the GoogleNet and the AlexNet Neural Network (NN) models. Images analyzed by the FRAI network are preprocessed by computer vision techniques such as the oriented gradient-based algorithm that can extract only the face region from any kind of picture. The Aligned Face dataset (AFD) was used to train and test the FRAI solution for extracting image features. The Labeled Faces in the Wild (LFW) holdout dataset has been used for external validation. Results and discussion: Overall, in comparison to previous techniques, our methodology has shown much better results on k-Nearest Neighbors (KNN) by yielding the maximum precision, recall, F1, and F2 score values (92.00, 92.66, 92.33, and 92.52%, respectively) for AFD and (95.00% for each variable) for LFW dataset, which were used as training and testing datasets. The FRAI model may be potentially used in healthcare and criminology as well as many other applications where it is important to quickly identify face features such as fingerprint for a specific identification target.

10.
Front Neurosci ; 17: 1302519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161798

RESUMO

Due to the stimulation of neuronal membrane dipoles by action potentials, under suitable conditions coherent dipole oscillations can be formed. We argue that these dipole oscillations satisfy the weak Bose-Einstein condensate criteria of the Froehlich model of biological coherence. They can subsequently generate electromagnetic fields (EMFs) propagating in the inter-neuronal space. When neighboring neurons fire synchronously, EMFs can create interference patterns and hence form holographic images containing analog information about the sensory inputs that trigger neuronal activity. The mirror pattern projected by EMFs inside the neuron can encode information in the neuronal cytoskeleton. We outline an experimental verification of our hypothesis and its consequences for anesthesia, neurodegenerative diseases, and psychiatric states.

11.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38256871

RESUMO

Volatile anesthetics (VAs) are medicinal chemistry compounds commonly used to enable surgical procedures for patients who undergo painful treatments and can be partially or fully sedated, remaining in an unconscious state during the operation. The specific molecular mechanism of anesthesia is still an open issue, but scientific evidence supports the hypothesis of the involvement of both putative hydrophobic cavities in membrane receptors as binding pockets and interactions between anesthetics and cytoplasmic proteins. Previous studies demonstrated the binding of VAs to tubulin. Since actin is the other major component of the cytoskeleton, this study involves an investigation of its interactions with four major anesthetics: halothane, isoflurane, sevoflurane, and desflurane. Molecular docking was implemented using the Molecular Operating Environment (MOE) software (version 2022.02) and applied to a G-actin monomer, extrapolating the relative binding affinities and root-mean-square deviation (RMSD) values. A comparison with the F-actin was also made to assess if the generally accepted idea about the enhanced F-to-G-actin transformation during anesthesia is warranted. Overall, our results confirm the solvent-like behavior of anesthetics, as evidenced by Van der Waals interactions as well as the relevant hydrogen bonds formed in the case of isoflurane and sevoflurane. Also, a comparison of the interactions of anesthetics with tubulin was made. Finally, the short- and long-term effects of anesthetics are discussed for their possible impact on the occurrence of mental disorders.

12.
Sci Rep ; 12(1): 21735, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526644

RESUMO

The umami taste is one of the five basic taste modalities normally linked to the protein content in food. The implementation of fast and cost-effective tools for the prediction of the umami taste of a molecule remains extremely interesting to understand the molecular basis of this taste and to effectively rationalise the production and consumption of specific foods and ingredients. However, the only examples of umami predictors available in the literature rely on the amino acid sequence of the analysed peptides, limiting the applicability of the models. In the present study, we developed a novel ML-based algorithm, named VirtuousUmami, able to predict the umami taste of a query compound starting from its SMILES representation, thus opening up the possibility of potentially using such a model on any database through a standard and more general molecular description. Herein, we have tested our model on five databases related to foods or natural compounds. The proposed tool will pave the way toward the rationalisation of the molecular features underlying the umami taste and toward the design of specific peptide-inspired compounds with specific taste properties.


Assuntos
Percepção Gustatória , Paladar , Peptídeos/química , Alimentos , Aprendizado de Máquina
13.
Curr Res Food Sci ; 5: 2270-2280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439645

RESUMO

Perception of taste is an emergent phenomenon arising from complex molecular interactions between chemical compounds and specific taste receptors. Among all the taste perceptions, the dichotomy of sweet and bitter tastes has been the subject of several machine learning studies for classification purposes. While previous studies have provided accurate sweeteners/bitterants classifiers, there is ample scope to enhance these models by enriching the understanding of the molecular basis of bitter-sweet tastes. Towards these goals, our study focuses on the development and testing of several machine learning strategies coupled with the novel SHapley Additive exPlanations (SHAP) for a rational sweetness/bitterness classification. This allows the identification of the chemical descriptors of interest by allowing a more informed approach toward the rational design and screening of sweeteners/bitterants. To support future research in this field, we make all datasets and machine learning models publicly available and present an easy-to-use code for bitter-sweet taste prediction.

14.
Biophys J ; 121(23): 4679-4688, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36262042

RESUMO

Spinocerebellar ataxia type 1 is a degenerative disorder caused by polyglutamine expansions and aggregation of Ataxin-1. The interaction between Capicua (CIC) and the AXH domain of Ataxin-1 protein has been suggested as a possible driver of aggregation for the expanded Ataxin-1 protein and the subsequent onset of spinocerebellar ataxia 1. Experimental studies have demonstrated that short constructs of CIC may prevent such aggregation and suggested this as a possible candidate to inspire the rational design of peptidomimetics. In this work, molecular modeling techniques, namely the alchemical mutation and force field-based molecular dynamics, have been employed to propose a pipeline for the rational design of a CIC-inspired inhibitor of the ataxin-1 aggregation pathway. In particular, this study has shown that the alchemical mutation can estimate the affinity between AXH and CIC with good correlation with experimental data, while molecular dynamics shed light on molecular mechanisms that occur for stabilization of the interaction between the CIC-inspired construct and the AXH domain of Ataxin-1. This work lays the foundation for a rational methodology for the in silico screening and design of peptidomimetics, which can expedite and streamline experimental studies to identify strategies for inhibiting the ataxin-1 aggregation pathway.


Assuntos
Peptidomiméticos , Ataxina-1 , Peptidomiméticos/farmacologia
15.
Nat Commun ; 13(1): 5424, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109556

RESUMO

Nanocapsules that collapse in response to guanosine triphosphate (GTP) have the potential as drug carriers for efficiently curing diseases caused by cancer and RNA viruses because GTP is present at high levels in such diseased cells and tissues. However, known GTP-responsive carriers also respond to adenosine triphosphate (ATP), which is abundant in normal cells as well. Here, we report the elaborate reconstitution of microtubule into a nanocapsule that selectively responds to GTP. When the tubulin monomer from microtubule is incubated at 37 °C with a mixture of GTP (17 mol%) and nonhydrolysable GTP* (83 mol%), a tubulin nanosheet forms. Upon addition of photoreactive molecular glue to the resulting dispersion, the nanosheet is transformed into a nanocapsule. Cell death results when a doxorubicin-containing nanocapsule, after photochemically crosslinked for properly stabilizing its shell, is taken up into cancer cells that overexpress GTP.


Assuntos
Nanocápsulas , Tubulina (Proteína) , Trifosfato de Adenosina/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Guanosina Trifosfato/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
16.
Microorganisms ; 10(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36144318

RESUMO

The application of plant beneficial microorganisms is widely accepted as an efficient alternative to chemical fertilizers and pesticides. It was shown that annually, mycorrhizal fungi and nitrogen-fixing bacteria are responsible for 5 to 80% of all nitrogen, and up to 75% of P plant acquisition. However, while bacteria are the most studied soil microorganisms and most frequently reported in the scientific literature, the role of fungi is relatively understudied, although they are the primary organic matter decomposers and govern soil carbon and other elements, including P-cycling. Many fungi can solubilize insoluble phosphates or facilitate P-acquisition by plants and, therefore, form an important part of the commercial microbial products, with Aspergillus, Penicillium and Trichoderma being the most efficient. In this paper, the role of fungi in P-solubilization and plant nutrition will be presented with a special emphasis on their production and application. Although this topic has been repeatedly reviewed, some recent views questioned the efficacy of the microbial P-solubilizers in soil. Here, we will try to summarize the proven facts but also discuss further lines of research that may clarify our doubts in this field or open new perspectives on using the microbial and particularly fungal P-solubilizing potential in accordance with the principles of the sustainability and circular economy.

17.
Eur Thyroid J ; 11(5)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35976137

RESUMO

To identify a peculiar genetic combination predisposing to differentiated thyroid carcinoma (DTC), we selected a set of single nucleotide polymorphisms (SNPs) associated with DTC risk, considering polygenic risk score (PRS), Bayesian statistics and a machine learning (ML) classifier to describe cases and controls in three different datasets. Dataset 1 (649 DTC, 431 controls) has been previously genotyped in a genome-wide association study (GWAS) on Italian DTC. Dataset 2 (234 DTC, 101 controls) and dataset 3 (404 DTC, 392 controls) were genotyped. Associations of 171 SNPs reported to predispose to DTC in candidate studies were extracted from the GWAS of dataset 1, followed by replication of SNPs associated with DTC risk (P < 0.05) in dataset 2. The reliability of the identified SNPs was confirmed by PRS and Bayesian statistics after merging the three datasets. SNPs were used to describe the case/control state of individuals by ML classifier. Starting from 171 SNPs associated with DTC, 15 were positive in both datasets 1 and 2. Using these markers, PRS revealed that individuals in the fifth quintile had a seven-fold increased risk of DTC than those in the first. Bayesian inference confirmed that the selected 15 SNPs differentiate cases from controls. Results were corroborated by ML, finding a maximum AUC of about 0.7. A restricted selection of only 15 DTC-associated SNPs is able to describe the inner genetic structure of Italian individuals, and ML allows a fair prediction of case or control status based solely on the individual genetic background.

18.
PLoS One ; 17(7): e0270955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35849605

RESUMO

Alsin is a protein known for its major role in neuronal homeostasis and whose mutation is associated with early-onset neurodegenerative diseases. It has been shown that its relocalization from the cytoplasm to the cell membrane is crucial to induce early endosomes maturation. In particular, evidences suggest that the N-terminal regulator of chromosome condensation 1 like domain (RLD) is necessary for membrane association thanks to its affinity to phosphoinositides, membrane lipids involved in the regulation of several signaling processes. Interestingly, this domain showed affinity towards phosphatidylinositol 3-phosphate [PI(3)P], which is highly expressed in endosomes membrane. However, Alsin structure has not been experimentally resolved yet and molecular mechanisms associated with its biological functions are mostly unknown. In this work, Alsin RLD has been investigated through computational molecular modeling techniques to analyze its conformational dynamics and obtain a representative 3D model of this domain. Moreover, a putative phosphoinositide binding site has been proposed and PI(3)P interaction mechanism studied. Results highlight the substantial conformational stability of Alsin RLD secondary structure and suggest the role of one highly flexible region in the phosphoinositides selectivity of this domain.


Assuntos
Fosfatos de Fosfatidilinositol , Fosfatidilinositóis , Sítios de Ligação , Membrana Celular/metabolismo , Endossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Ligação Proteica
19.
Eur Food Res Technol ; 248(9): 2215-2235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637881

RESUMO

Taste is a sensory modality crucial for nutrition and survival, since it allows the discrimination between healthy foods and toxic substances thanks to five tastes, i.e., sweet, bitter, umami, salty, and sour, associated with distinct nutritional or physiological needs. Today, taste prediction plays a key role in several fields, e.g., medical, industrial, or pharmaceutical, but the complexity of the taste perception process, its multidisciplinary nature, and the high number of potentially relevant players and features at the basis of the taste sensation make taste prediction a very complex task. In this context, the emerging capabilities of machine learning have provided fruitful insights in this field of research, allowing to consider and integrate a very large number of variables and identifying hidden correlations underlying the perception of a particular taste. This review aims at summarizing the latest advances in taste prediction, analyzing available food-related databases and taste prediction tools developed in recent years. Supplementary Information: The online version contains supplementary material available at 10.1007/s00217-022-04044-5.

20.
Minerva Cardiol Angiol ; 70(1): 102-122, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35261223

RESUMO

Nowadays, cardiovascular risk prediction scores are commonly used in primary prevention settings. Estimating the cardiovascular individual risk is of crucial importance for effective patient management and optimal therapy identification, with relevant consequences on secondary prevention settings. To reach this goal, a plethora of risk scores have been developed in the past, most of them assuming that each cardiovascular risk factor is linearly dependent on the outcome. However, the overall accuracy of these methods often remains insufficient to solve the problem at hand. In this scenario, machine learning techniques have repeatedly proved successful in improving cardiovascular risk predictions, being able to capture the non-linearity present in the data. In this concern, we present a detailed discussion concerning the application of classical versus machine learning-based cardiovascular risk scores in the clinical setting. This review aimed to give an overview of the current risk scores based on classical statistical approaches and machine learning techniques applied to predict the risk of several cardiovascular diseases, comparing them, discussing their similarities and differences, and highlighting their main drawbacks to aid the physician having a more critical understanding of these tools.


Assuntos
Doenças Cardiovasculares , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Fatores de Risco de Doenças Cardíacas , Humanos , Aprendizado de Máquina , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...