Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995071

RESUMO

This research presents the application of Dinaphthoylated Oxacalix[4]arene (DNOC) as a novel fluorescent receptor for the purpose of selectively detecting nitroaromatic compounds (NACs). The characterization of DNOC was conducted through the utilization of spectroscopic methods, including 1H-NMR, 13C-NMR, and ESI-MS. The receptor demonstrated significant selectivity in acetonitrile towards several nitroaromatic analytes, such as MNA, 2,4-DNT, 2,3-DNT, 1,3-DNB, 2,6-DNT, and 4-NT. This selectivity was validated by the measurement of emission spectra. The present study focuses on the examination of binding constants, employing Stern-Volmer analysis, as well as the determination of the lowest detection limit (3σ/Slope) and fluorescence quenching. These investigations aim to provide insights into the inclusion behavior of DNOC with each of the six analytes under fluorescence spectra investigation. Furthermore, the selectivity trend of the ligand DNOC for NAC detection is elucidated using Density Functional Theory (DFT) calculations conducted using the Gaussian 09 software. The examination of energy gaps existing between molecular orbitals, namely the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), provides a valuable understanding of electron-transfer processes and electronic interactions. Smaller energy gaps are indicative of heightened selectivity resulting from favorable electron-transfer processes, whereas bigger gaps suggest less selectivity attributable to weaker electronic contacts. This work integrates experimental and computational methodologies to provide a full understanding of the selective binding behavior of DNOC. As a result, DNOC emerges as a viable chemical sensor for detecting nitroaromatic explosives.

2.
J Fluoresc ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515663

RESUMO

We present the synthesis of a new oxacalix[4]arene system, DMANSOC, wherein two 5-(dimethylamino)-1-naphthalene sulfonamide subunits are attached to the lower rims of the basic oxacalix[4]arene platform. Extensive spectrophotometric studies were conducted to investigate the selectivity and sensitivity of DMANSOC towards nitroaromatic explosives. Detailed analysis of spectrophotometric data, utilizing techniques such as Stern-Volmer, Benesi-Hildebrand, Job's plot, and interference study, unequivocally demonstrated the effectiveness of DMANSOC as a highly efficient fluorescent sensor for 2,4,6-trinitrophenol explosive (TNP) detection in an aqueous medium. The sensor exhibited a linear concentration range of 7.5 µM to 50 µM, with a low detection limit of 4.64 µM and a high binding affinity of 2.45 × 104 M towards TNP. Furthermore, the efficiency of the sensor in environmental samples contaminated with TNP was evaluated, yielding excellent recovery rates. Complementary DFT calculations and molecular dynamics simulations were performed to elucidate the mechanism behind the selective fluorescence quenching of DMANSOC in the presence of TNP.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122936, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269661

RESUMO

Despite the largely tranquil environment in which humans live, a chemical terrorism attack is still a public safety problem, for which the capacity to quickly and accurately detect chemical warfare agents (CWAs) constitute a significant barrier. In this study, a straightforward fluorescent probe based on dinitrophenylhydrazine has been synthesised. It exhibits great selectivity and sensitivity for the nerve agent mimicking dimethyl chlorophosphate (DMCP) in the MeOH solution. Dinitrophenylhydrazine-oxacalix[4]arene (DPHOC), a 2,4-dinitrophenylhydrazine (2,4-DNPH) derivative, was synthesised and characterized with NMR and ESI-MS. Photophysical behavior, specially spectrofluorometric analysis was introduced to investigate the sensing phenomena of DPHOC toward dimethyl chlorophosphate (DMCP). The LOD of DPHOC toward DMCP was determined to be 2.1 µM, with a linear range from 5 to 50 µM (R2 = 0.99933). Moreover, DPHOC has been proven to be a promising probe toward the real time detection of DMCP.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Humanos , Agentes Neurotóxicos/análise , Corantes Fluorescentes/química , Dimiristoilfosfatidilcolina , Compostos Organofosforados/análise , Substâncias para a Guerra Química/análise
4.
J Fluoresc ; 32(1): 67-79, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34687396

RESUMO

In this era, explosives are easily available compared to the early days. Thus, more effective detection of explosives has become the main concern of homeland security. In the past decades, a large number of sensing materials have been developed for the detection of explosives in solid, vapor, and solution states through fluorescence methods. In recent years, great efforts have been devoted to developing new fluorescent materials with various sensing mechanisms for detecting explosives in order to achieve super-sensitivity, ultra-selectivity, as well as fast response time. Modified calixarenes have high potentials to detect nitroaromatic compounds (NACs) due to their favorable structural properties. It summarizes the detection of NACs by the modified calixarene system formed by the complex. Various methodologies responsible for complex formation and binding mechanisms (PET, FRET, EE, etc.) are the centerpiece of this review. Finally, conclusions and future outlook are presented and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...