Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 90(4): 1328-1344, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246894

RESUMO

PURPOSE: The acquisition of accurate B1 maps is critical for parallel transmit techniques (pTx). The presaturated turboFLASH (satTFL) method has been widely used in combination with interferometric encoding to provide robust and fast B1 maps. However, typical encodings, mostly evaluated on brain, do not necessarily fit all coils and organs. In this work, we evaluated and improved the accuracy of the satTFL for cervical spine at 7 T, proposing a novel interferometric encoding optimization. The benefits of such improvements were investigated in an exploratory study of quantitative T1 mapping with pTx-MP2RAGE. METHODS: Global optimization of interferometric encoding was implemented by simulating the ability of the satTFL to reconstruct B1 maps, with varying encoding and inclusion of complex noise, inside a region of interest covering the cervical spine. The performance of satTFL before and after optimization was compared to actual flip angle imaging. Optimized and non-optimized B1 maps were then used to calculate pTx pulses for MP2RAGE T1 mapping. RESULTS: Interferometric encoding optimization resulted in satTFL closer to actual flip angle imaging, with substantial gain of signal in regions where non-optimized satTFL could fail. T1 maps measured with non-adiabatic pTx pulses were closer to standard non-pTx results (which used adiabatic pulses) when using optimized-satTFL, with substantially lower specific absorption rate. CONCLUSION: Optimization of the satTFL interferometric encoding improves B1 maps in the spinal cord, in particular in low SNR regions. A linear correction of the satTFL was additionally shown to be required. The method was successfully used for quantitative phantom and in vivo T1 mapping, showing improved results compared to non-optimized satTFL thanks to improved pTx-pulse generation.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Medula Espinal/diagnóstico por imagem
2.
IEEE Trans Med Imaging ; 41(1): 39-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34370662

RESUMO

One of the main challenges in ultra-high field whole body MRI relates to the uniformity and efficiency of the radiofrequency field. Although recent advances in the design of RF coils have demonstrated that dipole antennas have a current distribution ideally suited to 7T MRI, they are limited by low isolation and poor robustness to loading changes. Multi-layered and self-decoupled loop coils have demonstrated improved RF performance in these areas at lower field MRI but have not been adapted to dipole designs. In this work, we introduce a novel type of RF antenna consisting of integrated multi-modal antenna with coupled radiating structures (I-MARS), which use layered conductors and dielectric substrates to allow dipole and transmission line modes to co-exist on the same compact dipole-shaped structure. The proposed antenna was optimally designed for 7T MRI and compared with existing dipole antennas using numerical simulations, which showed that I-MARS had similar B1 over specific absorption rate efficiency and superior isolation and stability. Subsequently, a prototype pTx coil array was built and tested in vivo on healthy volunteers at 7T. The articulated, modular construction of the I-MARS coil array allowed it to be readily conformed across multiple body regions (hip, knee, shoulder, lumbar spine and prostate), without requiring modification of the tuning and matching of the antennas. Using RF shimming, uniform and efficient excitation was successfully achieved in the acquisition of high-resolution MR images.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Desenho de Equipamento , Humanos , Masculino , Imagens de Fantasmas , Coluna Vertebral
3.
IEEE Trans Biomed Eng ; 68(4): 1178-1189, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32903175

RESUMO

To prevent the interferences between radiofrequency (RF) coils and other components in the magnetic resonance imaging (MRI) system such as gradient coils, it is essential to place an RF shield between the RF coils and gradient coils. However, the induced currents on conventional RF shields have negative influences on the RF coil performance. To reduce these influences, metamaterial absorbers (MA), a class of metamaterials exhibiting nearly unity absorption rate for the incident electromagnetic fields, can be employed for the design of a novel RF shield. However, the adoption of metamaterials in MRI systems is usually problematic because of the bulkiness of the metamaterial structure. In this work, capacitors and metallic interconnectors are used to miniaturize the MA so that the unit MA cell can operate at the Larmor frequencies of 7T and 9.4T MRI and stay compact. This MA-RF shield is used to improve the transmit efficiency of RF surface coils and reduce the specific absorption rate (SAR) in the region of interest (ROI). It is successfully demonstrated by simulations and experiments that, compared with conventional RF shield structure, the transmit efficiency can be enhanced by more than 32% and the peak SAR value can be reduced by 22% using the MA-RF shield. Moreover, it is observed that the transmit field penetration is improved when the surface coil is used with the MA-RF shield. This proof-of-concept study suggests a new practical way for the utilization of metamaterials in ultra-high field MRI applications.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Campos Eletromagnéticos , Desenho de Equipamento , Imagens de Fantasmas
4.
Magn Reson Med ; 81(6): 3826-3839, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30803001

RESUMO

PURPOSE: Parallel transmission techniques in MRI have the potential to improve the image quality near metal implants at 3 T. However, current testing of implants only evaluates the risk of radiofrequency (RF) heating in phantoms in circularly polarized mode. We investigate the influence of changing the transmission settings in a 2-channel body coil on the peak temperature near 2 CoCrMo hip prostheses, using adaptive specific absorption rate (SAR) as an estimate of RF heating. METHODS: Adaptive SAR is a SAR averaging method that is optimized to correlate with thermal simulations and limit the temperature to 39°C near hip implants. The simulated peak temperature was compared when using whole-body SAR, SAR10g , and adaptive SAR as a constraint for the maximum allowed input power. Adaptive SAR was used as a fast estimate of temperature to evaluate the trade-off between good image quality and low heating near the hip implants. Electromagnetic simulations were validated by simulating and measuring B1 maps and electric fields in a phantom at 3 T. RESULTS: Simulations and measurements showed excellent agreement. Limiting whole-body SAR to 2 W/kg and SAR10g to 10 W/kg resulted in temperatures up to 49.3°C and 40.7°C near the hip implants after 30 minutes of RF exposure, respectively. Predictions based on adaptive SAR limited the temperature to 39°C, and allowed to improve the B1 field distribution while preventing peak temperatures near the hip implants. CONCLUSION: Significant RF heating can occur at 3 T near hip implants when parallel transmission is used. Adaptive SAR can be integrated in RF shimming algorithms to improve the uniformity and reduce heating.


Assuntos
Prótese de Quadril , Imageamento por Ressonância Magnética , Metais , Temperatura Corporal , Simulação por Computador , Temperatura Alta , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Modelos Biológicos , Segurança do Paciente , Imagens de Fantasmas , Ondas de Rádio
5.
Magn Reson Med ; 81(1): 615-627, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30058186

RESUMO

PURPOSE: Magnetic resonance imaging is used increasingly to scan patients with hip prostheses. We evaluated the reliability of 10 g-averaged specific absorption rate (SAR10g ) to predict radiofrequency (RF) heating in tissues surrounding a hip implant at 7 T in an 8-channel pTx hip coil. A new adaptive SAR mass-averaging method is proposed to improve the correlation between the distribution of mass-averaged SAR and that of tissue temperature. METHODS: Currently, RF safety standards for implants are based on temperature instead of SAR, as SAR has not been introduced with regard to exposure scenarios with implants. In this manuscript, however, adaptive SAR is proposed for fast and reliable exposure evaluation with implants, after its correlation with tissue temperature is verified. A framework to calculate adaptive SAR mass-averaging was introduced, which uses a different averaging mass in tissues surrounding the implants and was designed to prevent the temperature from exceeding 39ºC. Predictions from SAR10g and adaptive SAR were compared with thermal simulations. RESULTS: The SAR10g method failed to predict both the location and amplitude of heating in tissue near the metal implants. In some cases, the temperature far exceeded 39ºC even when SAR10g was only 70% of the maximum allowed 10 W/kg. The distributions of adaptive SAR and temperature matched in most of the configurations, and the temperature remained below 39ºC when adaptive SAR was constrained. CONCLUSION: Adaptive SAR can accurately monitor RF heating and could be used for parallel transmit at 7 T to supplement current standards.


Assuntos
Prótese de Quadril , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio , Temperatura Corporal , Simulação por Computador , Radiação Eletromagnética , Cabeça do Fêmur/diagnóstico por imagem , Temperatura Alta , Humanos , Masculino , Metais , Modelos Anatômicos , Reprodutibilidade dos Testes , Risco
6.
Magn Reson Med ; 79(3): 1804-1816, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28643359

RESUMO

PURPOSE: We present the initial in vivo imaging results of an open architecture eight-channel parallel transmission (pTx) transceive radiofrequency (RF) coil array that was designed and constructed for static and dynamic 7T MRI of the knee and ankle joints. METHODS: The pTx coil has a U-shaped dual-row configuration (200 mm overall length longitudinally) that allows static and dynamic imaging of the knee and ankle joints at various postures and during active movements. This coil structure, in combination with B1 shimming, allows flexible configuration of B1 transmit profiles, with good homogeneity over 120-mm regions of interest. This coil enabled high-resolution gradient echo (e.g., 3D dual-echo steady state [DESS] and 3D multiecho data image combination [MEDIC]) and turbo spin echo (TSE) imaging (e.g., with proton density weighting [PDw], PDw with fat saturation, and T1 and T2 weightings) with local RF energy absorption rates well below regulatory limits. RESULTS: High-resolution 2D and 3D image series (e.g., 0.3 mm in-plane resolution for TSE, 0.47 mm isotropic for DESS and MEDIC) were obtained from the knee and ankle joints with excellent tissue contrast. Dynamic imaging during continuous knee and ankle flexion-extension cycles were successfully acquired. CONCLUSION: The new open pTx coil array provides versatility for high-quality static and dynamic MRI of the knee and ankle joints at 7T. Magn Reson Med 79:1804-1816, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Articulação do Tornozelo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Desenho de Equipamento , Humanos , Masculino , Pessoa de Meia-Idade , Postura/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...