Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278338

RESUMO

Hepcidin, initially identified in human blood ultrafiltrate as cysteine rich Liver Expressed Antimicrobial Peptide (LEAP-1), is a core molecular conduit between iron trafficking and immune response. Though a great share of studies has been focused on the iron regulatory function of hepcidins, investigations on the antimicrobial aspects are relatively less. The present study is aimed at identification of hepcidin from a teleost fish, Alepes djedaba followed by its recombinant expression, testing antibacterial property, stability and evaluation of cytotoxicity. Modes of action on bacterial pathogens were also examined. A novel hepcidin isoform, Ad-Hep belonging to the HAMP1 (Hepcidin antimicrobial peptide 1) group of hepcidins was identified from the shrimp scad, Alepes djedaba. Ad-Hep with 2.9 kDa size was found to be a cysteine rich, cationic peptide (+4) with antiparallel beta sheet conformation, a furin cleavage site (RXXR) and 'ATCUN' motif. It was heterologously expressed in E. coli Rosettagami B(DE3)PLysS cells and the recombinant peptide, rAd-Hep was found to have significant antibacterial activity, especially against Edwardsiella tarda, Vibrio parahaemolyticus and Escherichia coli. Membrane depolarization followed by membrane permeabilization and Reactive Oxygen Species (ROS) production were found to be the modes of action of rAd-Hep on bacterial cells. Ad-Hep was found to be non-haemolytic to hRBC and non-cytotoxic in mammalian cell line. Stability of the peptide at varying temperature, pH and metal salts qualify them for applications in vivo. With significant bactericidal activity coupled with direct killing mechanisms, the rAd-Hep can be a promising drug candidate for therapeutic applications in medicine and fish culture systems.


Assuntos
Escherichia coli , Hepcidinas , Animais , Humanos , Cisteína , Peixes/metabolismo , Isoformas de Proteínas , Antibacterianos/farmacologia , Ferro , Peptídeos , Mamíferos/metabolismo
2.
Mar Biotechnol (NY) ; 21(1): 124-137, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30542952

RESUMO

A sponge-associated actinomycete (strain MCCB267) was isolated from a marine sponge Mycale sp. collected in the Indian Ocean off the Southeast coast of India. Phylogenetic studies of this strain using 16S rRNA gene sequencing showed high sequence similarity to Streptomyces zhaozhouensis. However, strain MCCB267 showed distinct physiological and biochemical characteristic features and was thus designated as S. zhaozhouensis subsp. mycale. subsp. nov. A cytotoxicity-guided fractionation of the crude ethyl acetate extract of strain MCCB267 culture medium yielded four pure compounds belonging to the polycyclic tetramate macrolactam (PTM) family of natural products: ikarugamycin (IK) (1), clifednamide A (CF) (2), 30-oxo-28-N-methylikarugamycin (OI) (3), and 28-N-methylikarugamycin (MI) (4). The four compounds exhibited promising cytotoxic activity against NCI-H460 lung carcinoma cells in vitro, by inducing cell death via apoptosis. Flow cytometric analysis revealed that 1, 3, and 4 induced cell cycle arrest during G1 phase in the NCI-H460 cell line, whereas 2 induced cell arrest in the S phase. A concentration-dependent accumulation of cells in the sub-G1 phase was also detected upon treatment of the cancer cell line with compounds 1-4. The in vitro cytotoxicity studies were supported by molecular docking and molecular dynamic simulation analyses. An in silico study revealed that the PTMs can bind to the minor groove of DNA and subsequently induce the apoptotic stimuli leading to cell death. The characterization of the isolated actinomycete, the study of the mode of action of the four PTMs, 1-4, and the molecular docking and molecular dynamic simulations analyses are herein described.


Assuntos
Antineoplásicos/química , Apoptose/efeitos dos fármacos , DNA/química , Lactamas Macrocíclicas/química , Lactamas/química , Streptomyces/química , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apoptose/genética , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Concentração Inibidora 50 , Lactamas/isolamento & purificação , Lactamas/farmacologia , Lactamas Macrocíclicas/isolamento & purificação , Lactamas Macrocíclicas/farmacologia , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Filogenia , Poríferos/microbiologia , Poríferos/fisiologia , RNA Ribossômico 16S/genética , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/genética , Streptomyces/classificação , Streptomyces/metabolismo , Simbiose/fisiologia
3.
3 Biotech ; 7(1): 32, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28401470

RESUMO

After screening marine actinomycetes isolated from sediment samples collected from the Arctic fjord Kongsfjorden for potential anticancer activity, an isolate identified as Streptomyces artemisiae MCCB 248 exhibited promising results against the NCI-H460 human lung cancer cell line. H460 cells treated with the ethyl acetate extract of strain MCCB 248 and stained with Hoechst 33342 showed clear signs of apoptosis, including shrinkage of the cell nucleus, DNA fragmentation and chromatin condensation. Further to this treated cells showed indications of early apoptotic cell death, including a significant proportion of Annexin V positive staining and evidence of DNA damage as observed in the TUNEL assay. Amplified PKS 1 and NRPS genes involved in secondary metabolite production showed only 82% similarity to known biosynthetic genes of Streptomyces, indicating the likely production of a novel secondary metabolite in this extract. Additionally, chemical dereplication efforts using LC-MS/MS molecular networking suggested the presence of a series of undescribed tetraene polyols. Taken together, these results revealed that this Arctic S. artemisiae strain MCCB 248 is a promising candidate for natural products drug discovery and genome mining for potential anticancer agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...