Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 1): 132620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795888

RESUMO

Hybrid nanohydroxyapatite/carboxymethyl chitosan (nHAp-CMC) scaffolds have garnered significant attention in the field of regenerative engineering. The current study comparatively analyzed the physicochemical and biological properties of synthetic nanohydroxyapatite (SnHA)- and eggshell-sourced nanohydroxyapatite (EnHA)- based CMC biocomposites for pulp-dentin regeneration. EnHA and CMC were synthesized through a chemical process, whereas SnHA was commercially obtained. Composite scaffolds of SnHA-CMC and EnHA-CMC (1:5 w/w) were prepared using freeze-drying method. All biomaterials were characterized by FTIR, micro-Raman, XRD, HRSEM-EDX, and TEM analyses, and their in vitro bioactivity was assessed by immersing them in simulated body fluid for 21 days. The biological properties of the composite scaffolds were evaluated by assessing cytocompatibility using MTT assay and biomineralization potential by analyzing the odontogenic gene expressions (ALP, DSPP, DMP-1 and VEGF) in human dental pulp stem cells (DPSCs) using RT-qPCR method. Characterization studies revealed that EnHA displayed higher crystallinity and superior surface morphology compared to SnHA. The composite scaffolds showed a highly interconnected porous microstructure with pore sizes ranging between 60 and 220 µm, ideal for cell seeding. All tested materials, SnHA, EnHA, and their respective composites, displayed high cytocompatibility, increased ALP activity and degree of mineralization with significant upregulation of odontogenic-related genes on DPSCs (p < 0.05). Nevertheless, the odontogenic differentiation potential of EnHA-CMC on DPSCs was significantly higher when compared to SnHA-CMC. The findings from this study highlight the potential of EnHA-CMC as a promising candidate for pulp-dentin engineering.


Assuntos
Quitosana , Polpa Dentária , Durapatita , Casca de Ovo , Engenharia Tecidual , Alicerces Teciduais , Quitosana/química , Quitosana/análogos & derivados , Engenharia Tecidual/métodos , Polpa Dentária/citologia , Casca de Ovo/química , Humanos , Durapatita/química , Alicerces Teciduais/química , Animais , Dentina/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Nanocompostos/química , Fenômenos Químicos
2.
J Mech Behav Biomed Mater ; 141: 105748, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898356

RESUMO

The aim of this study was to assess the remineralization efficacy of chicken eggshell-derived nano-hydroxyapatite (CEnHAp) combined with phytosphingosine (PHS) on artificially induced dentinal lesions. PHS was commercially procured whereas CEnHAp was synthesized using microwave-irradiation method and characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), high-resolution scanning electron microscopy-energy-dispersive X-ray spectroscopy (HRSEM-EDX), and transmission electron microscopy (TEM). A total of 75 pre-demineralized coronal dentin specimens were randomly treated with one of the following test agents (n = 15 each): artificial saliva (AS), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), CEnHAp, PHS, and CEnHAp-PHS under pH cycling for 7, 14, and 28 days. Vickers microhardness indenter, HRSEM-EDX, and micro-Raman spectroscopy methods were used to assess the mineral changes in the treated dentin samples. Data were submitted to Kruskal-Wallis and Friedman's two-way analyses of variance (p < 0.05). HRSEM and TEM analysis depicted irregular spherical structure of the prepared CEnHAp with a particle size of 20-50 nm. The EDX analysis confirmed the presence of Ca, P, Na and Mg ions. The XRD pattern showed the characteristic crystalline peaks for hydroxyapatite and calcium carbonate that are present in the prepared CEnHAp. Dentin treated with CEnHAp-PHS revealed highest microhardness values along with complete tubular occlusion compared to other groups at all test time intervals (p < 0.05). Specimens treated with CEnHAp showed increased remineralization than those treated with CPP-ACP followed by PHS and AS groups. The intensity of mineral peaks, as observed in the EDX and micro-Raman spectra, confirmed these findings. Further, the molecular conformation of the collagen's polypeptide chains, and amide-I and CH2 peaks attained peak intensities in dentin treated with CEnHAp-PHS and PHS whereas other groups revealed poor stability of collagen bands. Microhardness, surface topography, and micro-Raman spectroscopy analyses revealed that dentin treated with CEnHAp-PHS have an improved collagen structure and stability as well as highest mineralization and crystallinity.


Assuntos
Casca de Ovo , Análise Espectral Raman , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Colágeno/análise , Saliva Artificial/química , Durapatita/química , Dentina/química
3.
J Mech Behav Biomed Mater ; 140: 105750, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878080

RESUMO

OBJECTIVE: This study aimed to evaluate the effect of incorporation of strontium based fluoro phosphate glass (SrFPG) 48P2O5-29CaO-14NaO-3CaF2-6SrO on physico chemical and biological properties of mineral trioxide aggregate (MTA). METHODS: Optimized SrFPG glass powder were prepared using planetary ball mill and incorporated into MTA in varying proportion (1, 5, 10 wt%) to obtain SrMT1, SrMT5, SrMT10 bio-composite respectively. The bio-composites were characterized using XRD, FTIR and SEM-EDAX before and after soaking for 28 days in stimulated body fluid (SBF) solution. To assess the mechanical properties and biocompatibility of the prepared bio-composite, density, pH analysis, compressive strength and cytotoxicity evaluation using MTT assay were done before and after soaking for 28 days in SBF solution. RESULTS: A nonlinear variation in compressive strength and pH values was noted. Of the bio-composites, SrMT10 was evidenced with rich apatite formation in XRD, FTIR and SEM with EDAX analysis. MTT assay showed increased cell viability in all the samples before and after in vitro studies.


Assuntos
Vidro , Fosfatos , Vidro/química , Estrôncio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...