RESUMO
The study aimed to investigate the effect of supplementing polyclonal antibodies (PAP) of avian origin against the ruminal methanogens Methanobrevibacter gottschalkii Ho (PAP-Ho) and M. ruminantium M1 (PAP-M1) on ruminal fermentation profile and methane production in Angus crossbred cattle (13 steers and 1 heifer). The experiment was conducted using a randomized block design with a 3â ×â 2â +â 1 factorial arrangement, replicated in 3 periods. The factors included proportions of PAP against Ho and M1 in the mixture (100:0, 50:50, and 0:100 Ho:M1) and level of each mixture (3- or 6-mL per d). Cattle in control treatment did not receive PAP supplementation. Ruminal fluid was collected from the animals on days 0, 14, and 21 of treatment to determine of ruminal fermentation profile and ex vivo methane production. There was no effect of level of inclusion on ex vivo methane production. Supplementation with PAP-M1, either alone or in combination with PAP-Ho, decreased ex vivo methane output compared to the control group. Furthermore, in vivo molar proportion of propionate tended to be greater with PAP-M1, alone or combined with PAP-Ho, when compared with the control group. The study concluded that polyclonal antibodies against ruminal methanogens have the potential to decrease enteric methane emissions in cattle. The research provided important insights into the potential use of PAP as a strategy for reducing greenhouse gas emissions from cattle. Further research is needed to confirm these findings and to determine the practicality and feasibility of using PAP.
Methane is produced by methanogens, a type of microorganism that inhabits environments with low or no oxygen, for instance, the rumen of cattle. Methane is a greenhouse gas, and its emission contributes to climate change. Antibodies are proteins produced by the immune system when foreign bodies, called antigens, enter the body. Antibodies bind antigens and inhibit their negative actions. This study aimed to determine if oral supplementation of cattle with antibodies produced against 2 species of ruminal methanogens can decrease methane emissions from cattle. Different mixtures and doses of the 2 antibodies were supplemented to Angus crossbred animals for 21 d. Ruminal fluid from each animal was collected and incubated for 48 h to determine methane production and concentration of fermentation metabolites. There was no difference between supplementing low or high levels of antibodies. Supplementation with antibodies can result in up to 13% lower methane emissions and, in addition, production of fermentation metabolites was also affected. In summary, even a low dose of antibodies against methanogens could potentially decrease methane emissions from cattle and could become a technology to mitigate the negative effects of methane on climate.
Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Fermentação , Metano , Methanobrevibacter , Rúmen , Animais , Bovinos , Rúmen/microbiologia , Metano/metabolismo , Masculino , Ração Animal/análise , Suplementos Nutricionais/análise , Dieta/veterinária , Anticorpos , Feminino , AvesRESUMO
Limpograss (Hemarthria altissima) is a warm-season perennial grass that has the potential to feed livestock during scarcity periods. This study evaluated the intake, nutrient digestibility, and animal performance of beef heifers fed 'Gibtuck' limpograss silage combined with different levels of a range cube supplementation. Twenty-four heifers (330 ± 16 kg live weight) were submitted to four different treatments with 6 replicates: (1) control, no supplementation + limpograss silage ad libitum; (2) 1.4 kg of supplement + limpograss silage ad libitum; (3) 2.8 kg of supplement + limpograss silage ad libitum; and (4) 4.2 kg of supplement + limpograss silage ad libitum. The apparent total tract digestibility of dry matter, organic matter, and crude protein showed a positive quadratic effect with increasing supplementation levels (p = 0.001, p = 0.002, and p < 0.0001, respectively). Overall, the supplement improved diet digestibility and total DM intake but reduced silage intake, indicating a combined effect (substitutive and additive effect) of the protein supplement. The increasing level of protein supplement increased the average daily gain with a quadratic effect (p ≤ 0.0001). Limpograss silage associated with supplementation can improve diet digestibility and increase the animal performance of growing heifers, providing an alternative for livestock in North Florida.
RESUMO
Choline is a vital micronutrient. In this study, we aimed to confirm, and expand on previous findings, how choline impacts embryos from the first 7 days of development to affect postnatal phenotype. Bos indicus embryos were cultured in a choline-free medium (termed vehicle) or medium supplemented with 1.8 mM choline. Blastocyst-stage embryos were transferred into crossbred recipients. Once born, calves were evaluated at birth, 94 days, 178 days, and at weaning (average age = 239 days). Following weaning, all calves were enrolled into a feed efficiency trial before being separated by sex, with males being slaughtered at ~580 days of age. Results confirm that exposure of 1.8 mM choline chloride during the first 7 days of development alters postnatal characteristics of the resultant calves. Calves of both sexes from choline-treated embryos were consistently heavier through weaning and males had heavier testes at 3 months of age. There were sex-dependent alterations in DNA methylation in whole blood caused by choline treatment. After weaning, feed efficiency was affected by an interaction with sex, with choline calves being more efficient for females and less efficient for males. Calves from choline-treated embryos were heavier, or tended to be heavier, than calves from vehicle embryos at all observations after weaning. Carcass weight was heavier for choline calves and the cross-sectional area of the longissimus thoracis muscle was increased by choline.
Assuntos
Blastocisto , Colina , Metilação de DNA , Animais , Colina/farmacologia , Colina/administração & dosagem , Bovinos , Feminino , Metilação de DNA/efeitos dos fármacos , Masculino , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Tamanho Corporal/efeitos dos fármacos , Animais Recém-Nascidos , Transferência Embrionária/veterinária , Técnicas de Cultura Embrionária/veterináriaRESUMO
Non-protein nitrogen (NPN) supplements improve animal performance in backgrounding diets. However, there is scarce information regarding the effect of different NPN sources and combinations on ruminal fermentation profile. The current study aimed to evaluate the effect of different NPN sources and their combinations on in vitro fermentation, microbial N synthesis, and methane (CH4) production in a backgrounding diet. Incubations were conducted on three separate days for 24 h using corn silage and cotton gin byproduct (70% and 30% of DM, respectively) as substrate. Treatments were control (without NPN), urea, and five different proportions of urea-biuret and nitrate (100:0, 75:25, 50:50, 25:75, and 0:100). Each treatment, except control, was formulated to be isonitrogenous and equivalent to 1% urea inclusion. Ruminal fluid was collected from two ruminally cannulated Angus crossbred steers fed ad libitum corn silage and cotton gin byproduct plus 100 g of a urea-biuret-nitrate mixture. The concentration of volatile fatty acids (VFAs) and ammonia nitrogen (NH3-N) were determined at 12 and 24 h of incubation. Final pH, in vitro dry and organic matter digestibility, total gas production, and concentration of CH4 were determined at 24 h. The supplementation of NPN increased (Pâ <â 0.05) the concentration of NH3-N at 12 and 24 h. Although NPN supplementation increased (Pâ <â 0.05) the concentration of total VFA and acetate at 12 h, treatments did not differ (Pâ >â 0.05) at 24 h. Supplementation of NPN increased (Pâ <â 0.05) the proportion of acetate at 12 and 24 h but tended to reduce (Pâ =â 0.054) the proportion of propionate only at 12 h. Digestibility and pH were not different (Pâ >â 0.05) among treatments. Increasing nitrates in the NPN supplement increased (Pâ <â 0.05) the proportion of acetate and reduced (Pâ <â 0.05) the proportion of butyrate at 12 and 24 h. The supplementation of NPN increased (Pâ <â 0.05) microbial N synthesis. Furthermore, increasing nitrate proportion in the NPN supplement increased (Pâ <â 0.05) the microbial N synthesis and efficiency of N use. Supplementation of NPN did not modify (Pâ >â 0.05) total gas or CH4 production. However, increasing nitrate proportion in the NPN supplement linearly reduced (Pâ <â 0.05) CH4 production. Supplementation of NPN increased NH3-N concentration and microbial N while increasing the inclusion of nitrate decreased the production of CH4 and increased the microbial N synthesis in a corn silage-based substrate under in vitro conditions.
RESUMO
Two experiments were conducted to evaluate the effect of nonprotein nitrogen (NPN) supplementation on in vitro fermentation and animal performance using a backgrounding diet. In experiment 1, incubations were conducted on three separate days (replicates). Treatments were control (CTL, without NPN), urea (U), urea-biuret (UB), and urea-biuret-nitrate (UBN) mixtures. Except for control, treatments were isonitrogenous using 1% U inclusion as a reference. Ruminal fluid was collected from two Angus-crossbred steers fed a backgrounding diet plus 100 g of a UBN mixture for at least 35 d. The concentration of volatile fatty acids (VFA) and ammonia nitrogen (NH3-N), in vitro organic matter digestibility (IVOMD), and total gas and methane (CH4) production were determined at 24 h of incubation. In experiment 2, 72 Angus-crossbred yearling steers (303â ±â 29 kg of body weight [BW]) were stratified by BW and randomly allocated in nine pens (eight animals/pen and three pens/treatment). Steers consumed a backgrounding diet formulated to match the diet used in the in vitro fermentation experiment. Treatments were U, UB, and UBN and were isonitrogenous using 1% U inclusion as a reference. Steers were adapted to the NPN supplementation for 17 d. Then, digestibility evaluation was performed after 13 d of full NPN supplementation for 4 d using 36 steers (12 steers/treatment). After that, steer performance was evaluated for 56 d (24 steers/treatment). In experiment 1, NPN supplementation increased the concentration of NH3-N and VFA (Pâ <â 0.01) without affecting the IVOMD (Pâ =â 0.48), total gas (Pâ =â 0.51), and CH4 production (Pâ =â 0.57). Additionally, in vitro fermentation parameters did not differ (Pâ >â 0.05) among NPN sources. In experiment 2, NPN supplementation did not change dry matter and nutrient intake (Pâ >â 0.05). However, UB and UBN showed lower (Pâ <â 0.05) nutrient digestibility than U, except for starch (Pâ =â 0.20). Dry matter intake (Pâ =â 0.28), average daily gain (Pâ =â 0.88), and gain:feed (Pâ =â 0.63) did not differ among steers receiving NPN mixtures. In conclusion, tested NPN mixtures have the potential to be included in the backgrounding diets without any apparent negative effects on animal performance and warrant further studies to evaluate other variables to fully assess the response of feeding these novel NPN mixtures.
Nonprotein nitrogen (NPN) supplements can be used as a nitrogen source for ruminants fed low-protein diets. The most common NPN source is urea, included typically at a range between 0.5% and 1% of the diet dry matter in growing beef cattle. Although other NPN sources and mixtures are available, there is scarce information regarding their use in ruminant production. Two experiments were conducted to evaluate the effect of NPN sources on in vitro fermentation and animal performance using a backgrounding diet. In experiment 1, three different incubations were performed for 24 h. Treatments were control (without NPN), urea (U), ureabiuret (UB), and ureabiuretnitrate (UBN) mixtures. In experiment 2, 72 crossbred yearling steers were randomly assigned to one of the following treatments: U, UB, and UBN mixtures. Diets were formulated to contain the same nitrogen concentration in both experiments. In experiment 1, supplementation of NPN increased the in vitro fermentation, but there were no differences among NPN sources. In experiment 2, steers performed similarly among NPN sources. These findings suggest that NPN mixtures have the potential to be included in the backgrounding diets without detrimental effects. Further studies should evaluate other variables (e.g., fermentation dynamic and microbial protein supply) when using these novel mixtures.
Assuntos
Biureto , Suplementos Nutricionais , Nitratos , Ureia/análogos & derivados , Animais , Suplementos Nutricionais/análise , Biureto/metabolismo , Biureto/farmacologia , Nitrogênio/metabolismo , Digestão , Dieta/veterinária , Nutrientes , Ureia/metabolismo , Metano/metabolismo , Ração Animal/análise , Rúmen/metabolismo , FermentaçãoRESUMO
Grazing livestock in subtropical and tropical regions are susceptible to prolonged exposition to periods of extreme environmental conditions (i.e., temperature and humidity) that can trigger heat stress (HS). Currently, there is limited information on the effects of HS in the cow-calf sector globally, including in the southern U.S., as well as on mitigation strategies that could be implemented to improve animal well-being and performance. This study evaluated the impact of artificial shade (SHADE vs. NO SHADE) and breed (ANGUS vs. BRANGUS) on performance of pregnant-lactating cows, nursing heifers, and their subsequent offspring. Twenty-four Angus and 24 Brangus black-hided cows [579 ± 8 kg body weight (BW); approximately 85 d of gestation] and their nursing heifers (approximately 174 d of age) were randomly allocated to 12 'Pensacola' bahiagrass pastures (Paspalum notatum Flüggé; 1.3 ha, n = 4 pairs/pasture), with or without access to artificial shade [NO SHADE BRANGUS (NSB), NO SHADE ANGUS (NSA), SHADE BRANGUS (SB), and SHADE ANGUS (SA)] for 56 d that anticipated weaning during the summer season in Florida. Body condition score (BCS) of cows, blood samples, and BW of cow-calf pairs were obtained every 14 d during the 56-d experimental period until weaning. Following weaning (d 56), treatments were ceased, and cows and weaned heifers were managed alike. Weaned heifers were randomly allocated to 4 pens (n = 12/pen) equipped with GrowSafe feed bunks for 14 d to assess stress responses during weaning via plasma haptoglobin. An effect of SHADE × BREED interaction was detected for cow ADG, BW change, final BW, and final BCS, where SB had the greatest ADG, BW change, final BW, and final BCS. On d 14, SA cows had the greatest concentrations of insulin whereas on d 28 NSB had the lowest concentrations, NSA the greatest, and SA and SB being intermediate. On d 56, SA tended to have the greatest plasma insulin concentrations and SB the lowest. Weight gain per area (kg/ha) tended to be 11.4 kg/ha greater in SHADE vs. NO SHADE pastures. Pre-weaning calf ADG tended to be 0.14 kg greater for SHADE vs. NO SHADE calves. Weaning weight and BW at 14-d post-weaning were lesser for NSB vs. NSA, SA, and SB, whereas no differences in postweaning ADG or haptoglobin were observed. Effects of SHADE × BREED × day interaction was detected on plasma concentrations of IGF-1, in which NSA heifers had the lowest concentrations on weaning day. Gestation length was greater for SHADE vs. NO SHADE cows, but with no impacts on subsequent calf birth and weaning weight. In summary, providing artificial shade to pregnant-lactating beef cows increased body weight gain of nursing heifers and Brangus cows, while no impact on Angus dams were observed. The provision of artificial shade during the first trimester of gestation did not alter growth performance of the subsequent offspring at birth and weaning even though gestation length was longer.
Assuntos
Dieta , Insulinas , Gravidez , Bovinos , Animais , Feminino , Dieta/veterinária , Lactação , Haptoglobinas , Aumento de Peso/fisiologia , Ração Animal/análiseRESUMO
During cell death, DNA is fragmented and reaches the bloodstream in the form of cell-free DNA (cfDNA). Luteal cells must undergo an apoptotic process during structural luteolysis to begin a new oestrous cycle. We hypothesized that cfDNA concentrations would increase when inducing luteolysis by applying prostaglandin F2α (PGF2α) analog to the cycling cow. Multiparous non-pregnant and non-lactating Angus cows (Bos taurus; n = 15) were synchronized using the 7-day CoSynch + CIDR protocol. Ten days after oestrus was detected, two treatments were applied (PGF2α, n = 10; or Con, n = 5). Twice a day, grey mode and colour Doppler ultrasonography were used to calculate area (CL-A) and luteal blood perfusion (LBP%). Additionally, we collected one blood sample for plasma progesterone (P4) and cfDNA concentrations for four consecutive days. Data analysis was performed using the GLM procedure of SAS. The luteolysis induction was demonstrated by a decrease in P4 concentrations (p ≤ .01) and CL-A (p ≤ .01) in the PGF2α group after 12 h of the PGF2α injection. Reduction of LBP% (p ≤ .01) in the PGF2α group after 36 h of the injection. The concentration of cfDNA showed a significant increase (p = .05) after 48 h of the PGF2α application in the PGF2α group. In conclusion, cfDNA showed a significantly increased concentration after luteolysis induction, which can imply that cfDNA could be used as a luteolysis biomarker in plasma.
Assuntos
Dinoprosta , Luteólise , Feminino , Bovinos , Animais , Progesterona , Corpo Lúteo , EstroRESUMO
Improvements in forage nutritive value can reduce methane emission intensity in grazing ruminants. This study was designed to evaluate how the legume rhizoma peanut (Arachis glabrata; RP) inclusion into bahiagrass (Paspalum notatum) hay diets would affect intake and CH4 production in beef steers. We also assessed the potential to estimate the proportion of RP contribution to CH4 emissions using δ13C from enteric CH4. Twenty-five Angus-crossbred steers were randomly allocated to one of five treatments (five steers per treatment blocked by bodyweight): 1) 100% bahiagrass hay (0%RP); 2) 25% RP hayâ +â 75% bahiagrass hay (25%RP); 3) 50% RP hayâ +â 50% bahiagrass hay (50%RP); 4) 75% RP hayâ +â 25% bahiagrass hay (75%RP); 5) 100% RP hay (100%RP). The study was laid out using a randomized complete block design, and the statistical model included fixed effect of treatment, and random effect of block. Methane emissions were collected using sulfur hexafluoride (SF6) technique, and apparent total tract digestibility was estimated utilizing indigestible neutral detergent fiber as an internal marker. A two-pool mixing model was used to predict diet source utilizing CH4 δ13C. Inclusion of RP did not affect intake or CH4 production (Pâ >â 0.05). Methane production per animal averaged 250 g CH4/d and 33 g CH4/kg dry matter intake, across treatments. The CH4 δ13C were -55.5, -60.3, -63.25, -63.35, and -68.7 for 0%RP, 25%RP, 50%RP, 75%RP, and 100%RP, respectively, falling within the reported ranges for C3 or C4 forage diets. Moreover, there was a quadratic effect (Pâ =â 0.04) on the CH4 δ13C, becoming more depleted (e.g., more negative) as the diet proportion of RP hay increased, appearing to plateau at 75%RP. Regression between predicted and observed proportions of RP in bahiagrass hay diets based on δ13C from CH4 indicate δ13C to be useful (Adj. R2â =â 0.89) for predicting the contribution of RP in C3-C4 binary diets. Data from this study indicate that, while CH4 production may not always be reduced with legume inclusion into C4 hay diets, the δ13C technique is indeed useful for tracking the effect of dietary sources on CH4 emissions.
Investigating methods for reducing enteric methane emissions from ruminant livestock are important to reduce environmental impacts and improving production efficiency through reduced energy losses. This experiment evaluated the effects of increasing proportion of rhizoma peanut hay (a C3 legume) into bahiagrass hay (a C4 grass) on intake and methane production in beef steers. In addition, carbon stable isotopes (13C) of the methane emitted were used to back-calculate the diet components consumed. Angus-crossbred steers were randomly allocated to one of five hay diets (treatments): 1) 100% bahiagrass; 2) 25% rhizoma peanutâ +â 75% bahiagrass; 3) 50% rhizoma peanutâ +â 50% bahiagrass; 4) 75% rhizoma peanutâ +â 25% bahiagrass; 5) 100% rhizoma peanut. Inclusion of rhizoma peanut did not affect intake or methane production, but apparent total tract digestibility increased as proportion of rhizoma peanut increased in the diet. The carbon stable isotope composition observed from enteric methane production was within the expected ranges for C3C4 forage diets. Furthermore, the carbon stable isotope composition from enteric methane production was useful in predicting contributions from each diet source in C3C4 binary diets.
Assuntos
Fabaceae , Paspalum , Bovinos , Animais , Isótopos de Carbono , Metano , Dieta/veterinária , Ruminantes , Arachis , Ração Animal/análise , RúmenRESUMO
Garlic (Allium sativum) contains secondary compounds that are known to modify rumen fermentation parameters and decrease methane (CH4) emissions. The objective was to evaluate the effects of increasing the inclusion levels and processing methods of garlic on in vitro fermentation and CH4 production. Treatments were arranged in a randomized complete block design with a 2 × 3 × 2 + 1 factorial arrangement, where the main factors were the initial condition of garlic (intact or smashed), drying process (freeze-dried, oven-dried, or autoclaved), and garlic proportion in the diet (2.5 and 5%) and one control (without garlic supplementation). Incubations were conducted using corn silage and cotton-gin trash (80:20, respectively) as basal substrates on three different days. Final pH, the concentration of volatile fatty acids (VFA) and ammonia nitrogen (NH3-N), in vitro organic matter digestibility (IVOMD), total gas production, and CH4 concentration were determined after 24 h. Initial garlic condition or drying processing neither modify (p > 0.05) the in vitro fermentation nor the CH4 production. However, increasing garlic inclusion linearly increased (p < 0.05) IVOMD, the concentration of the total VFA, and the proportion of propionate. Also, the concentration of NH3-N and the proportion of acetate increased quadratically (p < 0.05) with greater garlic inclusions. Finally, garlic inclusion did not affect (p > 0.05) gas and CH4 production. In conclusion, increasing garlic levels, but not the processing methods, improved in vitro fermentation but did not modify CH4 emissions under in vitro conditions.
RESUMO
Changing climatic conditions are imposing risks and diminishing yields in agriculture. Sorghum (Sorghum bicolor) silage is a feasible option for backgrounding beef cattle in terms of economic risk management and animal productivity when compared with corn (Zea mays) silage, due to its drought adaptability. Similarly, Brassica carinata meal has proven to be a viable alternative as a protein supplement in forage-based beef cattle systems, when included at 10% of the diet dry matter (DM). However, research is scarce regarding its inclusion in silage-based diets for backgrounding animals. The objective of this trial was to compare a processor-chopped sorghum silage (SS) against a typical corn silage (CS) in a digestibility and performance trial while supplementing two protein sources; one traditionally used like cottonseed meal (CSM) and one novel like B. carinata meal (BCM). A total of 84 Angus crossbred heifers (307 ± 33 kg BW) were evaluated in a randomized block design with a 2 × 2 factorial treatment arrangement with type of silage and protein source as factors. Diets were fed ad libitum, consisting of 89% silage source plus 10% protein source, and 1% mineral inclusion on DM basis. The experimental period consisted of 14 d of adaptation followed by 5 d of apparent total tract digestibility measurements and 56 d of animal performance and intake behavior measurements. Heifers fed SS showed greater number of daily meals but decreased meal sizes (P ≤ 0.05), not differing in meal length (P > 0.10) when compared with CS. Dry matter and organic matter (OM) digestibility showed a silage type × protein source interaction (P ≤ 0.01), where in CS diets, OM tended to be more digestible with CSM vs. BCM, and it did not differ between protein sources in SS based diets. There was an effect of protein (P ≤ 0.01) on ADF digestibility, where CSM was greater than BCM. No effect of treatment was observed (P ≥ 0.10) on DM intake. Average daily gain (ADG) and gain-to-feed ratio were greater for CS than SS (P ≤ 0.01) regardless of protein source. Although heifers fed CS had greater feed efficiency and digestibility, SS can still be considered a viable option for backgrounding beef heifers, obtaining adequate ADG rates of 0.945 kg/d. Lastly, BCM did not differ from CSM in terms of feed efficiency and animal performance, proving to be a viable alternative protein source in silage-based diets.
Increased atmospheric CO2, rising temperatures, and altered patterns of precipitation can limit the production of certain crops commonly used in agriculture, increasing risk, cost, and availability of feedstuffs. The search for alternative plants that could thrive in these changing scenarios is necessary to provide producers with a broader array of options to feed cattle. In this study, sorghum silage was compared with corn silage as the main dietary ingredient, with either Brassica carinata (carinata) or cottonseed meal as the protein source for growing beef heifers. Variables assessed included intake behavior, digestibility, and performance of beef heifers. Heifers fed sorghum silage gained less than heifers fed corn silage, though they grew at an adequate rate for a replacement heifer. Carinata meal showed similar performance results compared with cottonseed meal, despite some of its fiber components being less digestible in the total tract. Therefore, sorghum silage has potential to be a viable feedstuff for growing beef heifers although it may result in decreased performance compared with corn silage. Alternatively, carinata meal can be a practical alternative to cottonseed meal as a protein source in terms of animal performance. This could translate in an increase in the planted area of both sorghum and carinata in Southern United States, as they are adapted to drought and high temperatures, enhancing the resilience of beef production systems in a context of increased climate variability.
Assuntos
Silagem , Sorghum , Bovinos , Animais , Feminino , Silagem/análise , Óleo de Sementes de Algodão/farmacologia , Digestão , Fibras na Dieta/metabolismo , Dieta/veterinária , Nutrientes , Zea mays/metabolismo , Sorghum/metabolismo , Ração Animal/análise , Rúmen/metabolismoRESUMO
Eighty-four Angus crossbred heifers (13 ± 1 mo of age, 329.5 ± 61.92 kg of body weight [BW]) were used in a generalized randomized block design with a 2 × 2 factorial arrangement of treatments. The factors evaluated were: 1) diet type (whole plant sorghum silage [SS] vs. byproducts-based [BP]), and 2) feed additive: Aspergillus oryzae prebiotic (AOP; 2 g/d) vs. Negative control (CTL; 0 g/d), resulting in four treatments: sorghum silage-control (SC), sorghum silage-AOP (SA), byproducts-control (BC), and byproducts-AOP (BA). Heifers were stratified by body weight (BW), randomly assigned to treatments (21 heifers per treatment) and housed in 12 pens equipped with two GrowSafe feed bunks each to measure individual dry matter intake (DMI). After a 14-d adaptation, BW was measured every 14 d for 56 d. Chewing activity was monitored through collar-mounted HR-Tags (heat-related tags). Following the performance period, apparent total tract digestibility was measured in 40 heifers, using indigestible neutral detergent fiber as a marker. Heifers fed with the BP diets had greater DMI (2.92% vs. 2.59% of BW, P < 0.01) and average daily gain (ADG; 1.16 vs. 0.68 kg, P ≤ 0.01) than heifers fed with SS diets. Compared with BP-fed animals, heifers consuming the SS diets had 23 more visits/d to the feed bunks (P ≤ 0.01), consumed 53% less dry matter on each visit (P ≤ 0.01), and spent 39% more min chewing/d and 63% more min chewing/kg of DMI (P ≤ 0.01). However, chewing measured in min/kg of neutral detergent fiber intake was not affected by treatment (average 111.3 min/kg of NDF intake). Feeding AOP improved gain:feed (GF) by 15% in BP-fed heifers (0.120 vs. 0.104 kg/kg; P < 0.05). Inclusion of AOP increased organic matter digestibility (OMD) in SS diets (55.88% vs. 49.83%; P < 0.01), whereas it decreased OMD in BP diets (61.67% vs. 65.77%; P < 0.05). In conclusion, ADG and GF of BP-fed heifers was greater than SS-fed heifers, and GF was greater with AOP supplementation in BP-fed heifers. Improvement in GF in BP-fed heifers was likely not related to differences in nutrient digestibility as AOP inclusion did not enhance digestibility in the BP diet. Additionally, the effects of the AOP inclusion appear to be diet-dependent, where the 15% improvement in GF by AOP occurred in heifers fed with the more fermentable diet. Therefore, further research should explore the mechanisms responsible for the observed improvements in growth performance when feeding AOP to BP-fed heifers.
This experiment evaluated the effects of the dietary inclusion or not of Aspergillus oryzae prebiotic (AOP; 2 g/d) in two contrasting diets: sorghum silage-based (SS) vs. byproducts-based (BP), on growth performance, nutrient digestibility, and feeding behavior of growing heifers. A total of 84 Angus crossbred heifers were used in the study. Heifers fed with the BP diets had greater feed intake, average daily gain, and final body weight. In addition, heifers fed with the BP diets had reduced number of visits to the feed bunk but consumed more in each visit than heifers fed with the SS diets. Additionally, heifers fed with the BP diets had lesser chewing activity measured in total min/d and in min/kg of dry matter intake; however, chewing activity measured in min/kg of neutral detergent fiber was not influenced by treatments. The inclusion of AOP increased the gain:feed ratio by 15% in heifers fed with the BP diet but did not influence this variable in the SS diet. The inclusion of AOP increased nutrient digestibility in heifers fed with the SS diet and decreased nutrient digestibility in heifers fed with the BP diet. These results show that feeding AOP can enhance growth performance in beef heifers in a diet-dependent manner.
Assuntos
Aspergillus oryzae , Sorghum , Bovinos , Animais , Feminino , Silagem/análise , Prebióticos , Detergentes/farmacologia , Digestão , Fibras na Dieta/farmacologia , Zea mays , Dieta/veterinária , Comportamento Alimentar , Nutrientes , Peso Corporal , Grão Comestível , Ração Animal/análiseRESUMO
Maternal nutrition during pregnancy can induce epigenetic alterations in the fetal genome, such as changes in DNA methylation. It remains unclear whether these epigenetic alterations due to changes in maternal nutrition are transitory or persist over time. Here, we hypothesized that maternal methionine supplementation during preconception and early pregnancy could alter the fetal epigenome, and some of these alterations could persist throughout different developmental stages of the offspring. Beef cows were randomly assigned to either a control or a methionine-rich diet from - 30 to + 90 d, relative to the beginning of the breeding season. The methylome of loin muscle from the same bull calves (n = 10 per maternal diet) at 30 and 200 days of age were evaluated using whole-genome bisulfite sequencing. Notably, a total of 28,310 cytosines showed persistent methylation differences over time between maternal diets (q-value < 0.10, methylation change > 20%). These differentially methylated cytosines were in the transcription start sites, exons, or splice sites of 341 annotated genes. Over-representation analysis revealed that these differentially methylated genes are involved in muscle contraction, DNA and histone methylation, mitochondrial function, reactive oxygen species homeostasis, autophagy, and PI3K signaling pathway, among other functions. In addition, some of the persistently, differentially methylated cytosines were found in CpG islands upstream of genes implicated in mitochondrial activities and immune response. Overall, our study provides evidence that a maternal methionine-rich diet altered fetal epigenome, and some of these epigenetic changes persisted over time.
Assuntos
Metilação de DNA , Fosfatidilinositol 3-Quinases , Gravidez , Feminino , Bovinos , Animais , Masculino , Epigênese Genética , Dieta/veterinária , Músculos , Metionina , Ilhas de CpGRESUMO
Corn silage is the predominant mechanically harvested forage source for feedlot cattle production in the United States because of high yield. Alternatively, because of multiple cuttings per year and lower annual cost, the use of alfalfa or other forages, may increase opportunities for manure spreading, perennial soil cover, pollinator habitat, and greater carbon sequestration. The objective of this trial was to determine the feeding value of alfalfa haylage when replacing corn silage in growing cattle diets. One-hundred-sixty-five Angus crossbred steers [326â ±â 51 kg of body weight (BW)] were blocked by initial BW and randomly assigned to one of 28 pens at the University of Minnesota feedlot. Pens were randomly assigned to dietary growing treatments. The control diet was comprised of (DM basis) 50% corn silage, 19.25% rolled corn grain, 19.25% high moisture corn, 7% dried distillers grains plus solubles, and 4.5% liquid supplement (corn silage control, CS Control). For alfalfa haylage (AH) diets, AH substituted corn silage at 33% (AH 33), 66% (AH 66), or 100% (AH 100). Growth performance measurements [dry matter intake (DMI), average daily gain (ADG) and gain to feed (G:F) ratio] were assessed for 42 to 70 d depending on BW block. Afterwards, steers were fed a common finishing diet until harvested. There was a linear increase in DMI (Pâ <â 0.01) with increasing AH inclusion. Replacing CS with AH linearly decreased (Pâ ≤â 0.05) ADG and G:F. No differences (Pâ ≥â 0.10) were observed in finishing performance or carcass traits. Results from this study demonstrated that greater substitution of corn silage with alfalfa haylage in growing diets resulted in greater intake but reduced rate of gain and gain:feed. Despite slower rate of gain, cattle fed alfalfa haylage at increasing proportions during the growing period were able to compensate in BW gains during the finishing period and reached harvest weight and backfat thickness at similar days on feed than those fed corn silage. Based on these results the energy value of corn silage and alfalfa haylage were 3.05 and 2.39 Mcal ME/kg of DM, respectively, when included at 50% of the diet DM.
The potential for growing systems in beef cattle operations depends on the development of cost-effective alternatives for adding value to cattle after weaning. Alfalfa provides several ecosystem services to beef operations through greater opportunities for manure spreading, longer soil cover, pollinator habitat, and greater carbon sequestration compared to corn silage, which is the predominant mechanically harvested forage source for intensive cattle production in the United States. Increasing alfalfa haylage use in growing beef cattle diets requires understanding the effects of replacing corn silage with alfalfa haylage on ADG and feed cost of gain and carcass quality. The objective of this study was to compare the feeding value of alfalfa haylage vs. that of corn silage in growing diets while examining carry-over effects on the finishing period in terms of animal performance and carcass traits.
Assuntos
Silagem , Zea mays , Bovinos , Animais , Medicago sativa , Ração Animal/análise , Dieta/veterináriaRESUMO
Stable isotopes are useful for estimating livestock diet selection. The objective was to compare δ13C and δ15N to estimate diet proportion of C3-C4 forages when steers (Bos spp.) were fed quantities of rhizoma peanut (Arachis glabrata; RP; C3) and bahiagrass (Paspalum notatum; C4).Treatments were proportions of RP with bahiagrass hay: 100% bahiagrass (0%RP); 25% RP + 75% bahiagrass (25%RP); 50% RP + 50% bahiagrass (50%RP); 75% RP + 25% bahiagrass (75%RP); and 100% RP (100% RP). Feces, plasma, red blood cell (RBC), and hair were collected at 8-days intervals, for 32 days. Two-pool mixing model was utilized to back-calculate the proportion of RP based on the sample and forage δ13C or δ15N. Feces showed changes using δ13C by 8 days, and adj. R2 between predicted and observed RP proportion was 0.81 by 8 days. Plasma, hair, and RBC required beyond 32-days to reach equilibrium, therefore were not useful predictors of diet composition during the study. Diets were best represented using fecal δ13C at both 8-days and 32-days. By 32-days, fecal δ15N showed promise (R2 = 0.71) for predicting diet composition in C3-C4 diets. Further studies are warranted to further corroborate fecal δ15N as a predictor of diet composition in cattle.
Assuntos
Dieta , Paspalum , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Fezes , IsótoposRESUMO
Two experiments were performed to evaluate the effects of (1) different levels of liquid supplementation (LS) based on molasses enriched with 32% (as fed; 45% on DM basis) crude protein (CP) on intake of Hemarthria altissima hay (LH), digestibility, and rumen fermentation, and (2) different levels of LS based on molasses enriched with 32% CP in the in vitro gas production in LH diets. In Exp. 1, twelve heifers and 12 adult male castrated and cannulated cattle were used. Treatments were allocated in a randomized block design, in four treatments: (CTL) access ad libitum to the LH; (SUP2) ad libitum access to LH and supplementation with 0.9 kg d−1; (SUP4) ad libitum access to LH and supplementation with 1.8 kg d−1 and; (SUP6) ad libitum access to LH with 2.7 kg d−1. In Exp. 2, treatments were carried out in a randomized block design with four different proportions of LH diet: (CTL) 100 LH, (SUP2) 85 LH and 15 LS, (SUP4) 70 LH and 30 LS, (SUP6) 55 LH and 45% LS. In Exp. 1, liquid molasses-based supplementation did not affect LH intake (p > 0.05). Molasses intake improved as the supply increased, not reducing the intake of LH. In Exp. 2, the addition of LS to the LH caused a change in the VFA profile, with an increase in propionate production in vitro.
RESUMO
The objectives of this study were to determine the emission of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), as well as the isotopic composition of N2O from excreta of beef steers fed 'AU Grazer' sericea lespedeza hay [SL; Lespedeza cuneata (Dum. Cours.) G. Don]. Fifteen Brahman × Angus crossbred steers were fed one of three experimental diets: 0, 50, or 100% inclusion of SL into 'Tifton 85' bermudagrass hay (Cynodon spp.). Gas sampling occurred on days 0, 1, 3, 5, 7, 14, 18, 25, and 32 after urine or feces application to static chambers for two experimental periods. Effect of the day after feces application (P < 0.001), while day × inclusion of SL interaction was observed in urine (P < 0.001) for all greenhouse gases (GHG) analyzed. Peaks of emission of all GHG in urine and feces occurred in the first days (P < 0.001), with days 3 and 5 being most depleted in 15N-N2O in feces, and days 3, 5, and 7, in urine (P < 0.001). Feeding SL to beef steers was effective in mitigating the emission of GHG from the excreta, but further research is necessary to investigate the mechanisms behind the reductions.
Assuntos
Fabaceae , Gases de Efeito Estufa , Lespedeza , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Metano , Óxido Nitroso , Taninos , VerdurasRESUMO
The objective of Trial 1 was to determine the effects of condensed tannins (CT) from sericea lespedeza [SL; Lespedeza cuneata (Dum. Cours.) G. Don] on in vitro digestible organic matter (IVDOM), total gas production (GP), methane (CH4) emission, and ruminal fluid parameters after fermentation. Substrates used in four 48-h in vitro fermentations were 100% bermudagrass [(Cynodon dactylon (L.) Pers.] hay (0SL), 100% SL hay (100SL), and a mix of both hays (50SL). Linear reductions were observed for all parameters (P < 0.05) with the inclusion of SL, except for CH4 in relation to GP, that presented a quadratic effect (P = 0.005). In Trial 2, SL plants were enriched with 13C-CO2 to obtain pure enriched CT to identify the destination of fermentation end products of CT degradation. The enrichment of CT through the SL was successful (P < 0.001), and carbon originated from CT was detected in the fermentation end products [microbial mass, clarified rumen fluid, and in the CH4 produced (P < 0.001)]. Therefore, inclusion of SL was effective in reducing in vitro CH4 production and compound-specific tracing of δ13C abundance provided better quantitative understanding of the mechanisms of partitioning CT during ruminal fermentation processes.
Assuntos
Lespedeza , Proantocianidinas , Ração Animal/análise , Animais , Dieta , Fermentação , Cabras/metabolismo , Isótopos/metabolismo , Metano/metabolismo , Proantocianidinas/farmacologia , Rúmen/metabolismoRESUMO
This study investigated the effects of feeding an avian-derived polyclonal antibody preparation (PAP; CAMAS, Inc.) against Streptococcus bovis, Fusobacterium necrophorum, and lipopolysaccharides (40%, 35%, and 25% of the preparation, respectively) on ruminal fermentation [pH, ammonia-N (NH3-N), lactate, and volatile fatty acids (VFA)] of beef steers during a 21-d step-up diet adaptation. Eight ruminally cannulated Angus crossbred beef steers (658 ± 79 kg of body weight) were assigned in a crossover design to be transitioned from a diet containing ad libitum bermudagrass hay [Cynodon dactylon (L.) Pers.] plus 0.45 kg/d (as fed) of molasses with 0 (CON) or 3 g of PAP (PAP) to a high-grain diet. Transition consisted of three 7-d steps of increased inclusion of cracked corn (35%, 60%, and 82% of the diet DM for STEP1, STEP2, and STEP3, respectively). On each transition day and 7 d after STEP3 (STEP3-7d), ruminal fluid samples were obtained every 3 h for 24 h. Feeding 3 g of PAP daily increased (P < 0.01) average ruminal pH during STEP3 compared with CON steers (5.6 vs. 5.4 ± 0.05, respectively). During STEP1, NH3-N concentration was greater (P < 0.01; 9.4 vs. 6.8 ± 0.74 mM, respectively), and time (min/d) and area (time × pH) of ruminal pH below or equal to 5.2 was lesser (P ≤ 0.03) for steers consuming PAP compared with steers assigned to CON treatment (33.4 vs. 73.3 ± 21.7 min/d and 187.4 vs. 406.3 ± 119.7 min × pH/d, respectively). Steers consuming PAP had greater acetate:propionate ratio at 0, 3, and 6 h relative to diet change compared with CON (2.42, 2.35, 2.29 vs. 1.66, 1.79, and 1.72 ± 0.17, respectively), whereas butyrate molar proportions increased (P = 0.02; 17.1 vs. 11 ± 1.58 mol/100 mol for CON and PAP, respectively) when PAP was not fed at STEP2. Total ruminal lactate concentrations were not affected by PAP feeding (P > 0.11). In conclusion, feeding 3 g/d of polyclonal antibody preparation against S. bovis, F. necrophorum, and lipopolysaccharides was effective in increasing ruminal pH, A:P ratio, and NH3-N concentrations, possibly attenuating the risks of ruminal acidosis in steers during the step-up transition from forage to high-grain diets.
RESUMO
Bioactive compounds present in Olea europaea have shown promising antimicrobial potential as an alternative to conventional coccidiostats. These effects are exerted by triterpenic acids (TT) present in the olive plant, namely, oleanolic acid (OA), ursolic acid (UA), and maslinic acid (MA). The objective of this study was to determine the effects of OA, UA, and MA on in vitro ruminal fermentation in comparison with monensin (MON). The study consisted of two experiments conducted as randomized complete block designs using bahiagrass hay or a high-concentrate mixed ration as basal substrates. In the first experiment (Exp. 1), a batch culture was performed with increasing doses of OA, UA, or MA. In Exp. 2, to increase the solubility of OA, two chemical forms were evaluated: a sodium salt (OA-NA) or a phyto-phospholipid complex (OA-PHYT) at 0, 4, 40, 100, and 200 mg/L of incubation inoculum. In both experiments, the dose 0 was used as control (CTL) and monensin (MON) as a positive control. Data were analyzed as a randomized complete block design with a factorial arrangement of treatments. For Exp. 2, orthogonal polynomial contrasts, adjusted for unequal spacing were used to determine the linear effects of increasing doses of OA-NA and OA-PHYT. In Exp. 1, OA reduced the concentration of CH4 in the high-concentrate substrate compared with CTL (P = 0.04). In Exp. 2 the total gas production was linearly decreased with increasing doses of OA-NA in both substrates (P ≤ 0.02). Furthermore, OA-NA and OA-PHYT decreased in vitro organic matter digestibility (P < 0.01) in the bahiagrass substrate to the same extent that MON did. However, the concentration of CH4/g of incubated DM was only reduced by the highest doses of OA-NA (P < 0.02). Lastly, no effects were observed for total VFA nor the VFA profile; however, OA-NA linearly decreased the A:P ratio in the bahiagrass substrate (P = 0.03). In conclusion, the acid form of OA as well as the sodium salt and phyto-phospholipid complex of OA were able to modify some fermentation parameters in this study; however, the magnitude of the responses was lower compared with monensin. Future studies should test OA in vivo to determine if the effects on ruminal fermentation observed here can translate into improve production efficiency while reducing carbon emissions.
RESUMO
Ruminants produce approximately 30% of total anthropogenic methane emissions globally. The objective of this manuscript was to review nutritional enteric methane abatement practices for ruminants that are applicable under grazing conditions. A total of 1548 peer-reviewed research articles related to the abatement of enteric methane emissions were retrieved and classified into four categories: non-experimental, in vitro, in vivo confined, and in vivo grazing. The methane abatement strategies for grazing systems were arranged into grazing management and supplementation practices. Only 9% of the retrieved papers have been conducted under grazing conditions. Eight grazing management practices have been evaluated to reduce methane emissions. Decreasing the pre-grazing herbage mass reduced the methane emission per unit of product. Other grazing management practices such as increased stocking rate, decreased forage maturity, rotational stocking, and incorporating tannin-containing or non-tannin-containing feeds showed contradictory results. Nitrogen fertilization or silvopastoral systems did not modify methane emissions. Conversely, supplementation practices in grazing conditions showed contradictory responses on methane emissions. Lipid supplementation showed promising results and suggests applicability under grazing conditions. Identifying and implementing grazing strategies and supplementation practices under grazing conditions is required to increase efficiency and reduce the environmental impact of these systems.