Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109534, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38600976

RESUMO

To investigate the phosphorylation-based signaling and protein changes occurring early in epileptogenesis, the hippocampi of mice treated with pilocarpine were examined by quantitative mass spectrometry at 4 and 24 h post-status epilepticus at vast depth. Hundreds of posttranscriptional regulatory proteins were the major early targets of increased phosphorylation. At 24 h, many protein level changes were detected and the phosphoproteome continued to be perturbed. The major targets of decreased phosphorylation at 4 and 24 h were a subset of postsynaptic density scaffold proteins, ion channels, and neurotransmitter receptors. Many proteins targeted by dephosphorylation at 4 h also had decreased protein abundance at 24 h, indicating a phosphatase-mediated weakening of synapses. Increased translation was indicated by protein changes at 24 h. These observations, and many additional indicators within this multiomic resource, suggest that early epileptogenesis is characterized by signaling that stimulates both growth and a homeostatic response that weakens excitability.

2.
Brain ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478593

RESUMO

Full-length RIM1 and 2 are key components of the presynaptic active zone that ubiquitously control excitatory and inhibitory neurotransmitter release. Here, we report that the function of the small RIM isoform RIM4, consisting of a single C2 domain, is strikingly different from that of the long isoforms. RIM4 is dispensable for neurotransmitter release but plays a postsynaptic, cell-type specific role in cerebellar Purkinje cells that is essential for normal motor function. In the absence of RIM4, Purkinje cell intrinsic firing is reduced and caffeine-sensitive, and dendritic integration of climbing fibre input is disturbed. Mice lacking RIM4, but not mice lacking RIM1/2, selectively in Purkinje cells exhibit a severe, hours-long paroxysmal dystonia. These episodes can also be induced by caffeine, ethanol or stress and closely resemble the deficits seen with mutations of the PNKD (paroxysmal non-kinesigenic dystonia) gene. Our data reveal essential postsynaptic functions of RIM proteins and show non-overlapping specialized functions of a small isoform despite high homology to a single domain in the full-length proteins.

3.
Neurobiol Dis ; 190: 106364, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008342

RESUMO

Gangliogliomas (GGs) represent the most frequent glioneuronal tumor entity associated with chronic recurrent seizures; rare anaplastic GGs variants retain the glioneuronal character. So far, key mechanisms triggering chronic hyperexcitability in the peritumoral area are unresolved. Based on a recent mouse model for anaplastic GG (BRAFV600E, mTOR activation and Trp53KO) we here assessed the influence of GG-secreted factors on non-neoplastic cells in-vitro. We generated conditioned medium (CM) from primary GG cell cultures to developing primary cortical neurons cultured on multielectrode-arrays and assessed their electrical activity in comparison to neurons incubated with naïve and neuronal CMs. Our results showed that the GG CM, while not affecting the mean firing rates of networks, strongly accelerated the formation of functional networks as indicated increased synchrony of firing and burst activity. Washing out the GG CM did not reverse these effects indicating an irreversible effect on the neuronal network. Mass spectrometry analysis of GG CM detected several enriched proteins associated with neurogenesis as well as gliogenesis, including Gap43, App, Apoe, S100a8, Tnc and Sod1. Concomitantly, immunocytochemical analysis of the neuronal cultures exposed to GG CM revealed abundant astrocytes suggesting that the GG-secreted factors induce astroglial proliferation. Pharmacological inhibition of astrocyte proliferation only partially reversed the accelerated network maturation in neuronal cultures exposed to GG CM indicating that the GG CM exerts a direct effect on the neuronal component. Taken together, we demonstrate that GG-derived paracrine signaling alone is sufficient to induce accelerated neuronal network development accompanied by astrocytic proliferation. Perspectively, a deeper understanding of factors involved may serve as the basis for future therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Ganglioglioma , Humanos , Animais , Camundongos , Ganglioglioma/complicações , Ganglioglioma/metabolismo , Ganglioglioma/patologia , Neoplasias Encefálicas/metabolismo , Alta do Paciente , Convulsões/complicações , Neurônios/metabolismo
4.
Fluids Barriers CNS ; 20(1): 85, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993886

RESUMO

BACKGROUND: Parenchymal accumulation of beta-amyloid (Aß) characterizes Alzheimer's disease (AD). Aß homeostasis is maintained by two ATP-binding cassette (ABC) transporters (ABCC1 and ABCB1) mediating efflux, and the receptor for advanced glycation end products (RAGE) mediating influx across the blood-brain barrier (BBB). Altered transporter levels and disruption of tight junctions (TJ) were linked to AD. However, Aß transport and the activity of ABCC1, ABCB1 and RAGE as well as the functionality of TJ in AD are unclear. METHODS: ISMICAP, a BBB model involving microperfusion of capillaries, was used to assess BBB properties in acute cortical brain slices from Tg2576 mice compared to wild-type (WT) controls using two-photon microscopy. TJ integrity was tested by vascularly perfusing biocytin-tetramethylrhodamine (TMR) and quantifying its extravascular diffusion as well as the diffusion of FM1-43 from luminal to abluminal membranes of endothelial cells (ECs). To assess ABCC1 and ABCB1 activity, calcein-AM was perfused, which is converted to fluorescent calcein in ECs and gets actively extruded by both transporters. To probe which transporter is involved, probenecid or Elacridar were applied, individually or combined, to block ABCC1 and ABCB1, respectively. To assess RAGE activity, the binding of 5-FAM-tagged Aß by ECs was quantified with or without applying FPS-ZM1, a RAGE antagonist. RESULTS: In Tg2576 mouse brain, extravascular TMR was 1.8-fold that in WT mice, indicating increased paracellular leakage. FM1-43 staining of abluminal membranes in Tg2576 capillaries was 1.7-fold that in WT mice, indicating reduced TJ integrity in AD. While calcein was undetectable in WT mice, its accumulation was significant in Tg2576 mice, suggesting lower calcein extrusion in AD. Incubation with probenecid or Elacridar in WT mice resulted in a marked calcein accumulation, yet probenecid alone had no effect in Tg2576 mice, implying the absence of probenecid-sensitive ABC transporters. In WT mice, Aß accumulated along the luminal membranes, which was undetectable after applying FPS-ZM1. In contrast, marginal Aß fluorescence was observed in Tg2576 vessels, and FPS-ZM1 was without effect, suggesting reduced RAGE binding activity. CONCLUSIONS: Disrupted TJ integrity, reduced ABCC1 functionality and decreased RAGE binding were identified as BBB alterations in Tg2576 mice, with the latter finding challenging the current concepts. Our results suggest to manage AD by including modulation of TJ proteins and Aß-RAGE binding.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Probenecid/metabolismo , Homeostase , Perfusão
5.
J Mol Cell Biol ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682518

RESUMO

Synaptic vesicles can undergo several modes of exocytosis, endocytosis, and trafficking within individual synapses, and their fates may be linked to differences in the vesicular protein composition. Here, we mapped the intrasynaptic distribution of the synaptic vesicle proteins SV2B and SV2A in glutamatergic synapses of the hippocampus using three-dimensional electron microscopy. SV2B is almost completely absent from both docked vesicles and a distinct cluster of vesicles found near the active zone. In contrast, SV2A was found in all domains of the synapse and was slightly enriched near the active zone. SV2B and SV2A were found on the membrane in the peri-active zone, suggesting recycling from both clusters of vesicles. SV2B knockout mice displayed an increased seizure induction threshold only in a model employing high-frequency stimulation. Our data show that glutamatergic synapses generate molecularly distinct populations of synaptic vesicles and are able to maintain them at steep spatial gradients. The almost complete absence of SV2B from vesicles at the active zone of wildtype mice may explain why SV2A has been found to be more important for vesicle release.

6.
Glia ; 71(9): 2210-2233, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226895

RESUMO

Oligodendrocyte precursor cells (OPCs) generate oligodendrocytes, a process that may be tuned by neuronal activity, possibly via synaptic connections to OPCs. However, a developmental role of synaptic signaling to OPCs has so far not been shown unequivocally. To address this question, we comparatively analyzed functional and molecular characteristics of highly proliferative and migratory OPCs in the embryonic brain. Embryonic OPCs in mice (E18.5) shared the expression of voltage-gated ion channels and their dendritic morphology with postnatal OPCs, but almost completely lacked functional synaptic currents. Transcriptomic profiling of PDGFRα+ OPCs revealed a limited abundance of genes coding for postsynaptic signaling and synaptogenic cell adhesion molecules in the embryonic versus the postnatal period. RNA sequencing of single OPCs showed that embryonic synapse-lacking OPCs are found in clusters distinct from postnatal OPCs and with similarities to early progenitors. Furthermore, single-cell transcriptomics demonstrated that synaptic genes are transiently expressed only by postnatal OPCs until they start to differentiate. Taken together, our results indicate that embryonic OPCs represent a unique developmental stage biologically resembling postnatal OPCs but without synaptic input and a transcriptional signature in the continuum between OPCs and neural precursors.


Assuntos
Células Precursoras de Oligodendrócitos , Camundongos , Animais , Células Precursoras de Oligodendrócitos/metabolismo , Camundongos Transgênicos , Oligodendroglia/metabolismo , Neurônios/fisiologia , Neurogênese/fisiologia , Diferenciação Celular/fisiologia
7.
Nat Commun ; 14(1): 481, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717572

RESUMO

The blood-brain barrier (BBB) is a tightly and actively regulated vascular barrier. Answering fundamental biological and translational questions about the BBB with currently available approaches is hampered by a trade-off between accessibility and biological validity. We report an approach combining micropipette-based local perfusion of capillaries in acute brain slices with multiphoton microscopy. Micro-perfusion offers control over the luminal solution and allows application of molecules and drug delivery systems, whereas the bath solution defines the extracellular milieu in the brain parenchyma. Here we show, that this combination allows monitoring of BBB transport at the cellular level, visualization of BBB permeation of cells and molecules in real-time and resolves subcellular details of the neurovascular unit. In combination with electrophysiology, it permits comparison of drug effects on neuronal activity following luminal versus parenchymal application. We further apply micro-perfusion to the human and mouse BBB of epileptic hippocampi highlighting its utility for translational research and analysis of therapeutic strategies.


Assuntos
Barreira Hematoencefálica , Encéfalo , Camundongos , Humanos , Animais , Barreira Hematoencefálica/fisiologia , Encéfalo/irrigação sanguínea , Transporte Biológico/fisiologia , Capilares , Hipocampo
8.
Cell Rep ; 39(3): 110696, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443170

RESUMO

Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks.


Assuntos
Transmissão Sináptica , Vesículas Sinápticas , Animais , Proteínas de Ligação ao GTP/metabolismo , Homeostase/fisiologia , Mamíferos/metabolismo , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
9.
Neuro Oncol ; 24(5): 741-754, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34865163

RESUMO

BACKGROUND: Developmental brain tumors harboring BRAFV600E somatic mutation are diverse. Here, we describe molecular factors that determine BRAFV600E-induced tumor biology and function. METHODS: Intraventricular in utero electroporation in combination with the piggyBac transposon system was utilized to generate developmental brain neoplasms, which were comprehensively analyzed with regard to growth using near-infrared in-vivo imaging, transcript signatures by RNA sequencing, and neuronal activity by multielectrode arrays. RESULTS: BRAF  V600E expression in murine neural progenitors elicits benign neoplasms composed of enlarged dysmorphic neurons and neoplastic astroglia recapitulating ganglioglioma (GG) only in concert with active Akt/mTOR-signaling. Purely glial tumors resembling aspects of polymorphous low-grade neuroepithelial tumors of the young (PLNTYs) emerge from BRAFV600E alone. Additional somatic Trp53-loss is sufficient to generate anaplastic GGs (aGGs) with glioneuronal clonality. Functionally, only BRAFV600E/pAkt tumors intrinsically generate substantial neuronal activity and show enhanced relay to adjacent tissue conferring high epilepsy propensity. In contrast, PLNTY- and aGG models lack significant spike activity, which appears in line with the glial differentiation of the former and a dysfunctional tissue structure combined with reduced neuronal transcript signatures in the latter. CONCLUSION: mTOR-signaling and Trp53-loss critically determine the biological diversity and electrical activity of BRAFV600E-induced tumors.


Assuntos
Neoplasias Encefálicas , Ganglioglioma , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Ganglioglioma/genética , Humanos , Camundongos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
10.
J Neurosci ; 41(39): 8111-8125, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34400520

RESUMO

The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. However, its function in neurons is unknown. We show that, during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ third-order dendrites both in male and in female mice. Moreover, we demonstrate that SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown caused a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, whereas excitatory neurotransmission was unaffected. Finally, we show that this mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations revealed significant loss of SLK expression. Overall, the present data identify SLK as a key regulator of both dendritic complexity during development and inhibitory synapse maintenance.SIGNIFICANCE STATEMENT We show that dysmorphic neurons of human epileptogenic brain lesions have decreased levels of the Ste20-like kinase (SLK). Decreasing SLK expression in mouse neurons revealed that SLK has essential functions in forming the neuronal dendritic tree and in maintaining inhibitory connections with neighboring neurons.


Assuntos
Córtex Cerebral/metabolismo , Dendritos/genética , Inibição Neural/genética , Proteínas Serina-Treonina Quinases/genética , Sinapses/genética , Transmissão Sináptica/fisiologia , Adolescente , Adulto , Idoso , Animais , Córtex Cerebral/patologia , Criança , Pré-Escolar , Dendritos/metabolismo , Dendritos/patologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Adulto Jovem
11.
Adv Drug Deliv Rev ; 176: 113859, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246710

RESUMO

Brain delivery is a broad research area, the outcomes of which are far hindered by the limited permeability of the blood-brain barrier (BBB). Over the last century, research has been revealing the BBB complexity and the crosstalk between its cellular and molecular components. Pathologically, BBB alterations may precede as well as be concomitant or lead to brain diseases. To simulate the BBB and investigate options for drug delivery, several in vitro, in vivo, ex vivo, in situ and in silico models are used. Hundreds of drug delivery vehicles successfully pass preclinical trials but fail in clinical settings. Inadequate selection of BBB models is believed to remarkably impact the data reliability leading to unsatisfactory results in clinical trials. In this review, we suggest a rationale for BBB model selection with respect to the addressed research question and downstream applications. The essential considerations of an optimal BBB model are discussed.


Assuntos
Barreira Hematoencefálica , Modelos Biológicos , Animais , Sistemas de Liberação de Medicamentos , Humanos
12.
Cell Rep ; 32(12): 108182, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966786

RESUMO

Synaptically released glutamate is largely cleared by glutamate transporters localized on perisynaptic astrocyte processes. Therefore, the substantial variability of astrocyte coverage of individual hippocampal synapses implies that the efficacy of local glutamate uptake and thus the spatial fidelity of synaptic transmission is synapse dependent. By visualization of sub-diffraction-limit perisynaptic astrocytic processes and adjacent postsynaptic spines, we show that, relative to their size, small spines display a stronger coverage by astroglial transporters than bigger neighboring spines. Similarly, glutamate transients evoked by synaptic stimulation are more sensitive to pharmacological inhibition of glutamate uptake at smaller spines, whose high-affinity N-methyl-D-aspartate receptors (NMDARs) are better shielded from remotely released glutamate. At small spines, glutamate-induced and NMDAR-dependent Ca2+ entry is also more strongly increased by uptake inhibition. These findings indicate that spine size inversely correlates with the efficacy of local glutamate uptake and thereby likely determines the probability of synaptic crosstalk.


Assuntos
Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Tamanho Celular , Espinhas Dendríticas/metabolismo , Feminino , Masculino , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Colloids Surf B Biointerfaces ; 194: 111193, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32592944

RESUMO

Direct cytoplasmic delivery is essential for susceptible molecules as proteins and some nucleic acids to improve their therapeutic efficacy in cells. Using liposomes for their delivery proved challenging due to known uptake by endocytosis followed by partial or complete lysosomal breakdown. Thus, "fusogenic" liposomes (FL) composed of the neutral lipid dioleoylphosphatidylethanolamine (DOPE) combined with the cationic lipid 1, 2-dioleoyl-3-trimethylammoniumpropane (DOTAP) were tested in different ratios for their cell membrane fusion ability and their cytoplasmic delivery was compared to "pH-sensitive" liposomes in murine brain endothelial cells (bEnd.3). They were loaded with cargos of different molecular sizes (calcein/ enhanced green fluorescent-protein (EGFP)/ EGFP coding plasmid) and their intracellular delivery was quantitatively and qualitatively analyzed. FL composed of equimolar ratios of DOPE and DOTAP showed the most efficient cytoplasmic delivery of all cargos by fusing with the cell membranes within the first 15 min of addition. Their EGFP plasmid delivery to cells was quantified to be 58.2 ±â€¯9.5 % of the total EGFP load and calcein delivery was measured in buffer to be 64.1 ±â€¯4.0 % of the total calcein load, and reduced in blood to 26.1 ±â€¯0.6 %. Thus our tested FL allowed a fast and abundant cytoplasmic delivery of cargos independent of their molecular sizes while avoiding endocytosis, although they also underwent fast fusion with erythrocytes. Seemingly, these carriers could be used as a powerful delivery tool for in-vitro purposes.


Assuntos
Células Endoteliais , Lipossomos , Animais , Encéfalo , Cátions , Membrana Celular , Camundongos , Fosfatidiletanolaminas , Compostos de Amônio Quaternário
14.
Pharmaceutics ; 12(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503171

RESUMO

Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug's release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.

15.
Ann Neurol ; 87(6): 869-884, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196746

RESUMO

OBJECTIVE: Assess occurrence of the dendritic spine scaffolding protein Drebrin as a pathophysiologically relevant autoantibody target in patients with recurrent seizures and suspected encephalitis as leading symptoms. METHODS: Sera of 4 patients with adult onset epilepsy and suspected encephalitis of unresolved etiology and equivalent results in autoantibody screening were subjected to epitope identification. We combined a wide array of approaches, ranging from immunoblotting, immunoprecipitation, mass spectrometry, subcellular binding pattern analyses in primary neuronal cultures, and immunohistochemistry in brains of wild-type and Drebrin knockout mice to in vitro analyses of impaired synapse formation, morphology, and aberrant neuronal excitability by antibody exposure. RESULTS: In the serum of a patient with adult onset epilepsy and suspected encephalitis, a strong signal at ∼70kDa was detected by immunoblotting, for which mass spectrometry revealed Drebrin as the putative antigen. Three other patients whose sera also showed strong immunoreactivity around 70kDa on Western blotting were also anti-Drebrin-positive. Seizures, memory impairment, and increased protein content in cerebrospinal fluid occurred in anti-Drebrin-seropositive patients. Alterations in cerebral magnetic resonance imaging comprised amygdalohippocampal T2-signal increase and hippocampal sclerosis. Diagnostic biopsy revealed T-lymphocytic encephalitis in an anti-Drebrin-seropositive patient. Exposure of primary hippocampal neurons to anti-Drebrin autoantibodies resulted in aberrant synapse composition and Drebrin distribution as well as increased spike rates and the emergence of burst discharges reflecting network hyperexcitability. INTERPRETATION: Anti-Drebrin autoantibodies define a chronic syndrome of recurrent seizures and neuropsychiatric impairment as well as inflammation of limbic and occasionally cortical structures. Immunosuppressant therapies should be considered in this disorder. ANN NEUROL 2020;87:869-884.


Assuntos
Autoanticorpos/imunologia , Encefalite/imunologia , Neuropeptídeos/imunologia , Convulsões/imunologia , Adulto , Idoso , Animais , Encefalite/diagnóstico por imagem , Epitopos/imunologia , Feminino , Hipocampo/imunologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/imunologia , Transtornos Mentais/psicologia , Camundongos Knockout , Pessoa de Meia-Idade , Neuroimagem , Convulsões/diagnóstico por imagem , Sinapses/imunologia , Adulto Jovem
16.
PLoS Biol ; 17(3): e3000170, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30822303

RESUMO

Depolarization of presynaptic terminals stimulates calcium influx, which evokes neurotransmitter release and activates phosphorylation-based signalling. Here, we present the first global temporal profile of presynaptic activity-dependent phospho-signalling, which includes two KCl stimulation levels and analysis of the poststimulus period. We profiled 1,917 regulated phosphopeptides and bioinformatically identified six temporal patterns of co-regulated proteins. The presynaptic proteins with large changes in phospho-status were again prominently regulated in the analysis of 7,070 activity-dependent phosphopeptides from KCl-stimulated cultured hippocampal neurons. Active zone scaffold proteins showed a high level of activity-dependent phospho-regulation that far exceeded the response from postsynaptic density scaffold proteins. Accordingly, bassoon was identified as the major target of neuronal phospho-signalling. We developed a probabilistic computational method, KinSwing, which matched protein kinase substrate motifs to regulated phosphorylation sites to reveal underlying protein kinase activity. This approach allowed us to link protein kinases to profiles of co-regulated presynaptic protein networks. Ca2+- and calmodulin-dependent protein kinase IIα (CaMKIIα) responded rapidly, scaled with stimulus strength, and had long-lasting activity. Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) was the main protein kinase predicted to control a distinct and significant pattern of poststimulus up-regulation of phosphorylation. This work provides a unique resource of activity-dependent phosphorylation sites of synaptosomes and neurons, the vast majority of which have not been investigated with regard to their functional impact. This resource will enable detailed characterization of the phospho-regulated mechanisms impacting the plasticity of neurotransmitter release.


Assuntos
Terminações Pré-Sinápticas/metabolismo , Sinaptossomos/metabolismo , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Masculino , Espectrometria de Massas , Fosfoproteínas/metabolismo , Fosforilação , Cloreto de Potássio/farmacologia , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Sinaptossomos/fisiologia
17.
Nat Methods ; 16(4): 351, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30820033

RESUMO

The version of this paper originally published cited a preprint version of ref. 12 instead of the published version (Proc. Natl. Acad. Sci. USA 115, 5594-5599; 2018), which was available before this Nature Methods paper went to press. The reference information has been updated in the PDF and HTML versions of the article.

18.
J Neurosci ; 39(17): 3175-3187, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30792272

RESUMO

Transient brain insults, including status epilepticus (SE), can trigger a period of epileptogenesis during which functional and structural reorganization of neuronal networks occurs resulting in the onset of focal epileptic seizures. In recent years, mechanisms that regulate the dynamic transcription of individual genes during epileptogenesis and thereby contribute to the development of a hyperexcitable neuronal network have been elucidated. Our own results have shown early growth response 1 (Egr1) to transiently increase expression of the T-type voltage-dependent Ca2+ channel (VDCC) subunit CaV3.2, a key proepileptogenic protein. However, epileptogenesis involves complex and dynamic transcriptomic alterations; and so far, our understanding of the transcriptional control mechanism of gene regulatory networks that act in the same processes is limited. Here, we have analyzed whether Egr1 acts as a key transcriptional regulator for genes contributing to the development of hyperexcitability during epileptogenesis. We found Egr1 to drive the expression of the VDCC subunit α2δ4, which was augmented early and persistently after pilocarpine-induced SE. Furthermore, we show that increasing levels of α2δ4 in the CA1 region of the hippocampus elevate seizure susceptibility of mice by slightly decreasing local network activity. Interestingly, we also detected increased expression levels of Egr1 and α2δ4 in human hippocampal biopsies obtained from epilepsy surgery. In conclusion, Egr1 controls the abundance of the VDCC subunits CaV3.2 and α2δ4, which act synergistically in epileptogenesis, and thereby contributes to a seizure-induced "transcriptional Ca2+ channelopathy."SIGNIFICANCE STATEMENT The onset of focal recurrent seizures often occurs after an epileptogenic process induced by transient insults to the brain. Recently, transcriptional control mechanisms for individual genes involved in converting neurons hyperexcitable have been identified, including early growth response 1 (Egr1), which activates transcription of the T-type Ca2+ channel subunit CaV3.2. Here, we find Egr1 to regulate also the expression of the voltage-dependent Ca2+ channel subunit α2δ4, which was augmented after pilocarpine- and kainic acid-induced status epilepticus. In addition, we observed that α2δ4 affected spontaneous network activity and the susceptibility for seizure induction. Furthermore, we detected corresponding dynamics in human biopsies from epilepsy patients. In conclusion, Egr1 orchestrates a seizure-induced "transcriptional Ca2+ channelopathy" consisting of CaV3.2 and α2δ4, which act synergistically in epileptogenesis.


Assuntos
Canais de Cálcio/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Convulsões/metabolismo , Estado Epiléptico/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Humanos , Ácido Caínico , Masculino , Camundongos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Pilocarpina , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
19.
Nat Methods ; 16(2): 206, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30602783

RESUMO

In the version of this paper originally published, important figure labels in Fig. 3d were not visible. An image layer present in the authors' original figure that included two small dashed outlines and text labels indicating ROI 1 and ROI 2, as well as a scale bar and the name of the cell label, was erroneously altered during image processing. The figure has been corrected in the HTML and PDF versions of the paper.

20.
Nat Methods ; 15(11): 936-939, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377363

RESUMO

Single-wavelength fluorescent reporters allow visualization of specific neurotransmitters with high spatial and temporal resolution. We report variants of intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) that are functionally brighter; detect submicromolar to millimolar amounts of glutamate; and have blue, cyan, green, or yellow emission profiles. These variants could be imaged in vivo in cases where original iGluSnFR was too dim, resolved glutamate transients in dendritic spines and axonal boutons, and allowed imaging at kilohertz rates.


Assuntos
Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos , Neurônios/citologia , Retina/citologia , Córtex Visual/citologia , Animais , Cor , Feminino , Furões , Corantes Fluorescentes , Ácido Glutâmico/análise , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Retina/metabolismo , Córtex Visual/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...