Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 249: 345-353, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30909127

RESUMO

A limited number of studies have addressed environmental inequality, using various study designs and methodologies and often reaching contradictory results. Following a standardized multi-city data collection process within the European project EURO-HEALTHY, we conducted an ecological study to investigate the spatial association between nitrogen dioxide (NO2), as a surrogate for traffic related air pollution, and ten socioeconomic indicators at local administrative unit level in nine European Metropolitan Areas. We applied mixed models for the associations under investigation with random intercepts per Metropolitan Area, also accounting for the spatial correlation. The stronger associations were observed between NO2 levels and population density, population born outside the European Union (EU28), total crimes per 100,000 inhabitants and unemployment rate that displayed a highly statistically significant trend of increasing concentrations with increasing levels of the indicators. Specifically, the highest vs the lowest quartile of each indicator above was associated with 48.7% (95% confidence interval (CI): 42.9%, 54.8%), 30.9% (95%CI: 22.1%, 40.2%), 19.8% (95%CI: 13.4%, 26.6%) and 15.8% (95%CI: 9.9%, 22.1%) increase in NO2 respectively. The association with population density most probably reflects the higher volume in vehicular traffic, which is the main source of NO2 in urban areas. Higher pollution levels in areas with higher percentages of people born outside EU28, crime or unemployment rates indicate that worse air quality is typically encountered in deprived European urban areas. Policy makers should consider spatial environmental inequalities to better inform actions aiming to lower urban air pollution levels that will subsequently lead to improved quality of life, public health and health equity across the population.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/análise , Fatores Socioeconômicos , Poluentes Atmosféricos/análise , Cidades , Exposição Ambiental/estatística & dados numéricos , Europa (Continente) , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/análise , Pobreza , Saúde Pública , Qualidade de Vida , Fatores de Tempo
2.
Environ Pollut ; 247: 195-205, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30677664

RESUMO

This work presents the main results of two experimental campaigns carried out in summer and winter seasons in a complex pollution hotspot near a large park, El Retiro, in Madrid (Spain). These campaigns were aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas with high pollution values to obtain data to validate models on the effect of urban trees on particulate matter concentrations. Two different measuring approaches have been used. The first one was static, with instruments continuously characterizing the meteorological variables and the particulate matter concentration outside and inside the park. During the summer campaign, the particulate matter concentration was clearly influenced by a Saharan dust outbreak during the period 23 June to 10 July 2016, when most of the particulate matter was in the fraction PM2.5-10. During the winter campaign, the mass concentrations were related to the meteorological conditions and the high atmospheric stability. The second approach was a dynamic case with mobile measurements by portable instruments. During the summer campaign, a DustTrak instrument was used to measure PM10 and PM2.5 in different transects close to and inside the park at different distances from the traffic lane. It was observed a decrease in the concentrations up to 25% at 20 m and 50% at 200 m. High PM10 values were linked to dust resuspension caused by recreational activities and to a Saharan dust outbreak. The highest PM values were measured at the Independencia square, an area with many bus stops and high traffic density. During the winter campaign, three microaethalometers were used for Black Carbon measurement. Both pollutants also showed a reduction in their concentrations when moving towards inside the park. For PM10 and PM2.5, reductions up to 50% were observed, while for BC this reduction was smaller, about 20%.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Material Particulado/análise , Poluição do Ar/análise , Cidades , Poeira , Tamanho da Partícula , Estações do Ano , Espanha
3.
BMJ Open ; 6(2): e009493, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26908518

RESUMO

OBJECTIVES: While there is good evidence for associations between short-term exposure to ozone and a range of adverse health outcomes, the evidence from narrative reviews for long-term exposure is suggestive of associations with respiratory mortality only. We conducted a systematic, quantitative evaluation of the evidence from cohort studies, reporting associations between long-term exposure to ozone and mortality. METHODS: Cohort studies published in peer-reviewed journals indexed in EMBASE and MEDLINE to September 2015 and PubMed to October 2015 and cited in reviews/key publications were identified via search strings using terms relating to study design, pollutant and health outcome. Study details and estimate information were extracted and used to calculate standardised effect estimates expressed as HRs per 10 ppb increment in long-term ozone concentrations. RESULTS: 14 publications from 8 cohorts presented results for ozone and all-cause and cause-specific mortality. We found no evidence of associations between long-term annual O3 concentrations and the risk of death from all causes, cardiovascular or respiratory diseases, or lung cancer. 4 cohorts assessed ozone concentrations measured during the warm season. Summary HRs for cardiovascular and respiratory causes of death derived from 3 cohorts were 1.01 (95% CI 1.00 to 1.02) and 1.03 (95% CI 1.01 to 1.05) per 10 ppb, respectively. CONCLUSIONS: Our quantitative review revealed a paucity of independent studies regarding the associations between long-term exposure to ozone and mortality. The potential impact of climate change and increasing anthropogenic emissions of ozone precursors on ozone levels worldwide suggests further studies of the long-term effects of exposure to high ozone levels are warranted.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Mortalidade , Ozônio/efeitos adversos , Doenças Cardiovasculares/mortalidade , Causas de Morte , Estudos de Coortes , Humanos , Doenças Respiratórias/mortalidade , Fatores de Risco , Estações do Ano , Fatores de Tempo
4.
Sci Total Environ ; 536: 903-913, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26277440

RESUMO

In the framework of the EU EPHECT project (Emissions, Exposure Patterns and Health Effects of Consumer Products in the EU), irritative and respiratory effects were assessed in relation to acute (30-min) and long-term (24-h) inhalation exposure to key and emerging indoor air pollutants emitted during household use of selected consumer products. A detailed Health Risk Assessment (HRA) was performed for five selected pollutants of respiratory health relevance, namely acrolein, formaldehyde, naphthalene, d-limonene and α-pinene. For each pollutant, the Critical Exposure Limit (CEL) was compared to indoor air concentrations and exposure estimates for the use of 15 selected consumer products by two population groups (housekeepers and retired people) in the four geographical regions of Europe (North, West, South, East), which were derived previously based on microenvironmental modelling. For the present HRA, health-based CELs were derived for certain compounds in case indoor air quality guidelines were not available by the World Health Organization for end-points relevant to the current study. For each pollutant, the highest indoor air concentrations in each microenvironment and exposure estimates across home microenvironments during the day were lower than the corresponding acute and long-term CELs. However, considerable contributions, especially to acute exposures, were obtained in some cases, such as formaldehyde emissions resulting from single product use of a floor cleaning agent (82% CEL), a candle (10% CEL) and an electric air freshener (17% CEL). Regarding multiple product use, the case of 30-min formaldehyde exposure reaching 34% CEL when eight product classes were used across home microenvironments, i.e. all-purpose/kitchen/floor cleaning agents, furniture/floor polish, combustible/electric air fresheners, and perfume, needs to be highlighted. Such estimated values should be evaluated with caution, as these may be attributed to the exposure scenarios specifically constructed for the present study, following a 'most-representative worst-case scenario' approach for exposure and health risk assessment.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Europa (Continente) , Substâncias Perigosas , Produtos Domésticos , Humanos , Exposição por Inalação/estatística & dados numéricos , Medição de Risco
5.
Sci Total Environ ; 536: 890-902, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26173853

RESUMO

Within the framework of the EPHECT project (Emissions, exposure patterns and health effects of consumer products in the EU), irritative and respiratory health effects were assessed in relation to acute and long-term exposure to key and emerging indoor air pollutants emitted during household use of selected consumer products. In this context, inhalation exposure assessment was carried out for six selected 'target' compounds (acrolein, formaldehyde, benzene, naphthalene, d-limonene and α-pinene). This paper presents the methodology and the outcomes from the micro-environmental modelling of the 'target' pollutants following single or multiple use of selected consumer products and the subsequent exposure assessment. The results indicate that emissions from consumer products of benzene and α-pinene were not considered to contribute significantly to the EU indoor background levels, in contrast to some cases of formaldehyde and d-limonene emissions in Eastern Europe (mainly from cleaning products). The group of housekeepers in East Europe appears to experience the highest exposures to acrolein, formaldehyde and benzene, followed by the group of the retired people in North, who experiences the highest exposures to naphthalene and α-pinene. High exposure may be attributed to the scenarios developed within this project, which follow a 'most-representative worst-case scenario' strategy for exposure and health risk assessment. Despite the above limitations, this is the first comprehensive study that provides exposure estimates for 8 population groups across Europe exposed to 6 priority pollutants, as a result of the use of 15 consumer product classes in households, while accounting for regional differences in uses, use scenarios and ventilation conditions of each region.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais , Produtos Domésticos , Europa (Continente)
6.
Sci Total Environ ; 536: 880-889, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26051596

RESUMO

Consumer products are frequently and regularly used in the domestic environment. Realistic estimates for product use are required for exposure modelling and health risk assessment. This paper provides significant data that can be used as input for such modelling studies. A European survey was conducted, within the framework of the DG Sanco-funded EPHECT project, on the household use of 15 consumer products. These products are all-purpose cleaners, kitchen cleaners, floor cleaners, glass and window cleaners, bathroom cleaners, furniture and floor polish products, combustible air fresheners, spray air fresheners, electric air fresheners, passive air fresheners, coating products for leather and textiles, hair styling products, spray deodorants and perfumes. The analysis of the results from the household survey (1st phase) focused on identifying consumer behaviour patterns (selection criteria, frequency of use, quantities, period of use and ventilation conditions during product use). This can provide valuable input to modelling studies, as this information is not reported in the open literature. The above results were further analysed (2nd phase), to provide the basis for the development of 'most representative worst-case scenarios' regarding the use of the 15 products by home-based population groups (housekeepers and retired people), in four geographical regions in Europe. These scenarios will be used for the exposure and health risk assessment within the EPHECT project. To the best of our knowledge, it is the first time that daily worst-case scenarios are presented in the scientific published literature concerning the use of a wide range of 15 consumer products across Europe.


Assuntos
Poluentes Ambientais/análise , Produtos Domésticos/estatística & dados numéricos , Política Ambiental , Europa (Continente)
7.
Sci Total Environ ; 490: 798-806, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24907614

RESUMO

This paper highlights the development and application of the probabilistic model (IAPPEM), which predicts PM10 and PM2.5 concentrations in the indoor environments. A number of features are detailed and justified through simulated comparison, which are shown to be necessary when modelling indoor PM concentrations. A one minute resolution predicts up to 20% higher peak concentrations compared with a 15 min resolution. A modified PM10 deposition method, devised to independently analyse the PM2.5 fraction of PM10, predicts up to 56% higher mean concentrations. The application of the model is demonstrated by a number of simulations. The total PM contribution, from different indoor emission sources, was analysed in terms of both emission strength and duration. In addition, PM concentrations were examined by varying the location of the emission source. A 24-hour sample profile is simulated based on sample data, designed to demonstrate the combined functionality of the model, predicting PM10 and PM2.5 peak concentrations up to 1107±175 and 596±102 µg m(-3) respectively, whilst predicting PM10 and PM2.5 mean concentrations up to 259±21 and 166±11 µg m(-3) respectively.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental/métodos , Modelos Estatísticos , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...