Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599424

RESUMO

Recycling and high-value reutilization of waste cotton fabrics (WCFs) has attracted a widespread concern. One potential solution is to extract nanocellulose. Sulfuric acid hydrolysis is a conventional method for the production of nanocellulose with high negative charge from WCFs. However, the recycling and disposal of chemicals in nanocellulose production, along with low yields, remain significant challenges. Consequently, there is a pressing need for a sustainable method to produce nanocellulose at higher yield without the use of chemicals. Herein, we propose a green, sustainable and chemical-free method to extract nanocellulose from WCFs. The nanocellulose displayed a rod-like shape with a length of 50-300 nm, a large aspect ratio of 18.4 ± 2 and the highest yield of up to 89.9 %. The combined short-time and efficient two-step process, involving electron beam irradiation (EBI) and high-pressure homogenization (HPH), offers a simple and efficient alternative approach with a low environmental impact, to extract nanocellulose. EBI induced a noticeable degradation in WCFs and HPH exfoliated cellulose to nano-size with high uniformity via mechanical forces. The as-prepared nanocellulose exhibits excellent emulsifying ability as the Pickering emulsion emulsifier. This work provides a facile and efficient approach for nanocellulose fabrication as well as a sustainable way for recycle and reutilization of the waste cotton fabrics.


Assuntos
Celulose , Fibra de Algodão , Celulose/química , Elétrons , Química Verde/métodos , Hidrólise
2.
Sci Rep ; 13(1): 15354, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717108

RESUMO

Suppressing inflammation and abnormal subchondral bone turnover is essential for reducing osteoarthritis (OA) progression and pain relief. This study focused on calcitonin gene-related peptide (CGRP), which is involved in inflammation and bone metabolism, and investigated whether a CGRP receptor antagonist (rimegepant) could suppress OA progression and relieve pain in two OA models. C57BL/6 mice (10-week-old) underwent surgical destabilization of the medial meniscus, and Rimegepant (1.0 mg/kg/100 µL) or phosphate-buffered saline (100 µL) was administered weekly intraperitoneally after OA surgery and evaluated at 4, 8, and 12 weeks. In the senescence-accelerated mice (SAM)-prone 8 (SAMP8), rimegepant was administered weekly before and after subchondral bone sclerosis and sacrificed at 9 and 23 weeks, respectively. Behavioral assessment and immunohistochemical staining (CGRP) of the dorsal root ganglion (DRG) were conducted to assess pain. In DMM mice, synovitis, cartilage degeneration, and osteosclerosis were significantly suppressed in the rimegepant group. In SAMP8, synovitis, cartilage degeneration, and osteosclerosis were significantly suppressed by rimegepant at 9 weeks; however, not at 23 weeks. Behavioral assessment shows the traveled distance and the number of standings in the rimegepant group were significantly longer and higher. In addition, CGRP expression of the DRG was significantly lower in the rimegepant group at 8 and 12 weeks of DMM and 9 weeks of SAMP8 treatment. No adverse effects were observed in either of the mouse models. Inhibition of CGRP signaling has the potential to be a therapeutic target to prevent OA progression and suppress pain through the attenuation of subchondral bone sclerosis and synovitis.


Assuntos
Osteoartrite , Sinovite , Animais , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Peptídeo Relacionado com Gene de Calcitonina , Estudos de Viabilidade , Esclerose , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Inflamação , Sinovite/tratamento farmacológico
3.
Mod Rheumatol ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37522619

RESUMO

OBJECTIVES: Aging and obesity are major risk factors for osteoarthritis (OA), a widespread disease currently lacking efficient treatments. Senescence-accelerated mouse prone 8 (SAMP8) display early-onset aging phenotypes, including OA. This study investigates the impacts of high-fat diet (HFD)-induced obesity on OA development in SAMP8. METHODS: SAMP8 at five weeks were fed either a normal chow diet or an HFD for ten weeks to induce obesity. Parameters related to obesity, liver function, and lipid and glucose metabolism were analyzed. At 14 weeks of age, knee joint pathology, bone mineral density, and muscle strength were assessed. Immunohistochemistry and TUNEL staining were performed to evaluate markers for cartilage degeneration and chondrocyte apoptosis. RESULTS: At 14 weeks of age, HFD-induced obesity increased liver and adipose tissue inflammation in SAMP8 without further exacerbating diabetes. Histological scoring revealed aggravated cartilage, menisci deterioration, and synovitis, while no further loss of bone mineral density or muscle strength was observed. Increased chondrocyte apoptosis was detected in knee joints following HFD feeding. CONCLUSIONS: Ten weeks of HFD feeding promotes spontaneous OA progression in 14-week-old SAMP8, potentially via liver damage subsequent chondrocyte apoptosis. This aging-obese mouse model may prove valuable for further exploration of spontaneous OA pathophysiology.

4.
Mech Ageing Dev ; 212: 111806, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003368

RESUMO

Osteoarthritis (OA) is the most common age-related joint disease. However, the role of many microRNAs (miRNA) in skeletal development and OA pathogenesis has not been sufficiently elucidated using genetically modified mice with gain- and loss-of-function models. We generated Cartilage-specific miR-26a overexpressing (Col2a1-Cre;miR-26a Tgfl/fl: Cart-miR-26a Tg) mice and global miR-26a knockout (miR-26a KO) mice. The purpose of the present study was to determine the role of miR-26a in OA pathogenesis using aging and surgically induced models. Skeletal development of Cart-miR-26a Tg and miR-26a KO mice was grossly normal. Knee joints were evaluated by histological grading systems. In surgically-induced OA and aging models (12 and 18 months of age), Cart-miR-26a Tg mice and miR-26a KO mice exhibited OA-like changes such as proteoglycan loss and cartilage fibrillation with no significant differences in OARSI score (damage of articular cartilage) compared with control mice. However, miR-26a KO mice reduced muscle strength and bone mineral density at 12 months of age. These findings indicated that miR-26a modulates bone loss and muscle strength but has no essential role in aging-related or post-traumatic OA.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , Camundongos , Animais , Osteoartrite/genética , Osteoartrite/patologia , MicroRNAs/genética , Camundongos Knockout , Debilidade Muscular , Condrócitos/patologia
5.
Arthritis Res Ther ; 24(1): 235, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258202

RESUMO

BACKGROUND: Animal models of spontaneous osteoarthritis (OA) are sparse and not well characterized. The purpose of the present study is to examine OA-related changes and mechanisms in senescence-accelerated mouse prone 8 (SAMP8) that displays a phenotype of accelerated aging.  METHODS: Knees of male SAMP8 and SAM-resistant 1 (SAMR1) mice as control from 6 to 33 weeks of age were evaluated by histological grading systems for joint tissues (cartilage, meniscus, synovium, and subchondral bone), and µCT analysis. Gene expression patterns in articular cartilage were analyzed by real-time PCR. Immunohistochemistry was performed for OA-related factors, senescence markers, and apoptosis. RESULTS: Starting at 14 weeks of age, SAMP8 exhibited mild OA-like changes such as proteoglycan loss and cartilage fibrillation. From 18 to 33 weeks of age, SAMP8 progressed to partial or full-thickness defects with exposure of subchondral bone on the medial tibia and exhibited synovitis. Histological scoring indicated significantly more severe OA in SAMP8 compared with SAMR1 from 14 weeks [median (interquartile range): SAMR1: 0.89 (0.56-1.81) vs SAMP8: 1.78 (1.35-4.62)] to 33 weeks of age [SAMR1: 1.67 (1.61-1.04) vs SAMP8: 13.03 (12.26-13.57)]. Subchondral bone sclerosis in the medial tibia, bone mineral density (BMD) loss of femoral metaphysis, and meniscus degeneration occurred much earlier than the onset of cartilage degeneration in SAMP8 at 14 weeks of age. CONCLUSIONS: SAMP8 are a spontaneous OA model that is useful for investigating the pathogenesis of primary OA and evaluating therapeutic interventions.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Masculino , Modelos Animais de Doenças , Osteoartrite/genética , Osteoartrite/patologia , Cartilagem Articular/patologia , Tíbia , Envelhecimento/metabolismo , Proteoglicanas
6.
Front Cell Dev Biol ; 10: 898428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784484

RESUMO

Tendon is a fibrous connective tissue, that is, transmitting the forces that permit body movement. However, tendon/ligament biology is still not fully understood and especially, the role of miRNAs in tendon/ligament is sparse and uncharacterized in in vivo models. The objectives of this study were to address the function of DICER using mice with tendon/ligament-specific deletion of Dicer (Dicer conditional knockout; cKO), and to identify key miRNAs in tendon/ligament. Dicer cKO mice exhibited hypoplastic tendons through structurally abnormal collagen fibrils with downregulation of tendon-related genes. The fragility of tendon did not significantly affect the tensile strength of tendon in Dicer cKO mice, but they showed larger dorsiflexion angle in gait compared with Control mice. We identified two miRNAs, miR-135a and miR-1247, which were highly expressed in the Achilles tendon of Control mice and were downregulated in the Achilles tendon of Dicer cKO mice compared with Control mice. miR-135a mimic increased the expression of tendon-related genes in injured Achilles tendon-derived fibroblasts. In this study, Dicer cKO mice exhibited immature tendons in which collagen fibrils have small diameter with the downregulation of tendon-related genes such as transcriptional factor, extracellular matrix, and miRNAs. Thus, DICER plays an important role in tendon maturation, and miR-135a may have the potential to become key miRNA for tendon maturation and healing.

7.
FEBS Lett ; 596(8): 1047-1058, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35294042

RESUMO

The therapeutic potential of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) for various diseases and tissue repair is attracting attention. Here, EVs from conditioned medium of human bone marrow MSCs at passage 5 (P5) and passage 12 (P12) were analysed using mouse Achilles tendon rupture model and lectin microarray. P5 MSC-EVs accelerated Achilles tendon healing compared with P12 MSC-EVs. Fucose-specific lectin TJA-II was indicated as a glycan marker for therapeutic MSC-EVs. The present study demonstrated that early passaged MSC-EVs promote Achilles tendon healing compared with senescent MSC-EVs. Glycans on MSC-EVs might provide useful tools to establish a quality control and isolation system for therapeutic MSC-EVs in regenerative medicine.


Assuntos
Tendão do Calcâneo , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Medula Óssea , Modelos Animais de Doenças , Camundongos , Polissacarídeos
8.
ISA Trans ; 129(Pt A): 580-591, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35016800

RESUMO

Uncertain dynamics and unknown time-varying disturbances always exist in servo systems and deteriorate tracking accuracy significantly. To tackle the problem, this paper presents a novel adaptive robust control scheme based on neural networks and the robust integral of the sign of the error (RISE) method. In the proposed scheme, a new neural network compensator is developed, where a reference-driven neural network and an error-driven neural network are employed to compensate for uncertain system dynamics and unknown time-varying disturbances, respectively. And an RISE-based robust feedback controller is designed to suppress uncompensated dynamics. Asymptotic tracking control of the servo system with uncertain dynamics and unknown time-varying disturbances is guaranteed by using the Lyapunov theory. Comparative experiments and simulations with different reference signals and various types of external disturbances were conducted based on a linear motor-driven stage. Experimental and simulational results verify the superior tracking performance and powerful disturbance rejection ability of the proposed method.

9.
Front Cell Dev Biol ; 10: 1043259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684425

RESUMO

Osteoarthritis (OA), the most prevalent aging-related joint disease, is characterized by insufficient extracellular matrix synthesis and articular cartilage degradation and is caused by various risk factors including aging and traumatic injury. Most microRNAs (miRNAs) have been associated with pathogenesis of osteoarthritis (OA) using in vitro models. However, the role of many miRNAs in skeletal development and OA pathogenesis is uncharacterized in vivo using genetically modified mice. Here, we focused on miR-23-27-24 clusters. There are two paralogous miR-23-27-24 clusters: miR-23a-27a-24-2 (miR-23a cluster) and miR-23b-27b-24-1 (miR-23b cluster). Each miR-23a/b, miR-24, and miR-27a/b is thought to function coordinately and complementary to each other, and the role of each miR-23a/b, miR-24, and miR-27a/b in OA pathogenesis is still controversial. MiR-23a/b clusters are highly expressed in chondrocytes and the present study examined their role in OA. We analyzed miRNA expression in chondrocytes and investigated cartilage-specific miR-23a/b clusters knockout (Col2a1-Cre; miR-23a/bflox/flox: Cart-miR-23clus KO) mice and global miR-23a/b clusters knockout (CAG-Cre; miR-23a/bflox/flox: Glob-miR-23clus KO) mice. Knees of Cart- and Glob-miR-23a/b clusters KO mice were evaluated by histological grading systems for knee joint tissues using aging model (12 and/or 18 month-old) and surgically-induced OA model. miR-23a/b clusters were among the most highly expressed miRNAs in chondrocytes. Skeletal development of Cart- and Glob-miR-23clus KO mice was grossly normal although Glob-miR-23clus KO had reduced body weight, adipose tissue and bone density. In the aging model and surgically-induced OA model, Cart- and Glob-miR-23clus KO mice exhibited mild OA-like changes such as proteoglycan loss and cartilage fibrillation. However, the histological scores were not significantly different in terms of the severity of OA in Cart- and Glob-miR-23clus KO mice compared with control mice. Together, miR-23a/b clusters, composed of miR-23a/b, miR-24, miR-27a/b do not significantly contribute to OA pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...