Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 100(7): 1085-1092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709715

RESUMO

BACKGROUND: The impact of electromagnetic radiation from communication on the male reproductive system has emerged as a significant concern in public health. A notable distinction of the 5G sub-6 GHz band, compared to traditional 2G, 3G, and 4G frequency bands, is the inclusion of higher frequency bands. This has raised public concerns regarding the potential effects of these higher frequencies on organisms, particularly their reproductive systems. While it is imperative to investigate the biological effects and potential risks associated with these new frequency bands in laboratory settings, comparing and evaluating differences between various frequency bands remain challenging due to the absence of standardized parameters such as exposure conditions and duration. In contrast, dose assessment offers a simpler and more reliable approach. MATERIALS AND METHODS: The dose assessment method was employed in this study to investigate the risks associated with sub-6 GHz electromagnetic radiation from 5G base stations on the male reproductive system. A classical human body model (Duke) was utilized, and an electromagnetic simulation environment was established based on the actual polarization direction of the exposed base stations and various body postures. This research explored the effects of field direction, posture, public population, and frequency on the specific absorption rate of the reproductive system. RESULTS AND CONCLUSIONS: While maintaining the same level of exposure, a higher frequency results in a reduced dosage on reproductive system. Further analysis reveals that, considering the public exposure threshold, the employment of higher frequency bands in 5G sub-6 GHz does not present a greater dosage on reproductive system compared to lower frequency bands. Consequently, with regard to dosage, there is no need for excessive concern among the general public regarding the impact of electromagnetic radiation emitted by 5G base stations operating below 6 GHz on male reproductive health.


Assuntos
Radiação Eletromagnética , Masculino , Humanos , Absorção de Radiação , Reprodução/efeitos da radiação , Genitália Masculina/efeitos da radiação , Doses de Radiação
2.
Ecotoxicol Environ Saf ; 279: 116504, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795418

RESUMO

Cranial radiotherapy is a major treatment for leukemia and brain tumors. Our previous study found abscopal effects of cranial irradiation could cause spermatogenesis disorder in mice. However, the exact mechanisms are not yet fully understood. In the study, adult male C57BL/6 mice were administrated with 20 Gy X-ray cranial irradiation (5 Gy per day for 4 days consecutively) and sacrificed at 1, 2 and 4 weeks. Tandem Mass Tag (TMT) quantitative proteomics of testis was combined with bioinformatics analysis to identify key molecules and signal pathways related to spermatogenesis at 4 weeks after cranial irradiation. GO analysis showed that spermatogenesis was closely related to oxidative stress and inflammation. Severe oxidative stress occurred in testis, serum and brain, while serious inflammation also occurred in testis and serum. Additionally, the sex hormones related to hypothalamic-pituitary-gonadal (HPG) axis were disrupted. PI3K/Akt pathway was activated in testis, which upstream molecule SCF/C-Kit was significantly elevated. Furthermore, the proliferation and differentiation ability of spermatogonial stem cells (SSCs) were altered. These findings suggest that cranial irradiation can cause spermatogenesis disorder through brain-blood-testicular cascade oxidative stress, inflammation and the secretory dysfunction of HPG axis, and SCF/C-kit drive this process through activating PI3K/Akt pathway.


Assuntos
Irradiação Craniana , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-kit , Espermatogênese , Animais , Masculino , Espermatogênese/efeitos da radiação , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Estresse Oxidativo/efeitos da radiação , Irradiação Craniana/efeitos adversos , Testículo/efeitos da radiação , Testículo/patologia , Transdução de Sinais/efeitos da radiação , Fator de Células-Tronco/metabolismo , Inflamação
3.
Sci Total Environ ; 927: 172391, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608899

RESUMO

The rapid development of 5G communication technology has increased public concern about the potential adverse effects on human health. Till now, the impacts of radiofrequency radiation (RFR) from 5G communication on the central nervous system and gut-brain axis are still unclear. Therefore, we investigated the effects of 3.5 GHz (a frequency commonly used in 5G communication) RFR on neurobehavior, gut microbiota, and gut-brain axis metabolites in mice. The results showed that exposure to 3.5 GHz RFR at 50 W/m2 for 1 h over 35 d induced anxiety-like behaviour in mice, accompanied by NLRP3-dependent neuronal pyroptosis in CA3 region of the dorsal hippocampus. In addition, the microbial composition was widely divergent between the sham and RFR groups. 3.5 GHz RFR also caused changes in metabolites of feces, serum, and brain. The differential metabolites were mainly enriched in glycerophospholipid metabolism, tryptophan metabolism, and arginine biosynthesis. Further correlation analysis showed that gut microbiota dysbiosis was associated with differential metabolites. Based on the above results, we speculate that dysfunctional intestinal flora and metabolites may be involved in RFR-induced anxiety-like behaviour in mice through neuronal pyroptosis in the brain. The findings provide novel insights into the mechanism of 5G RFR-induced neurotoxicity.


Assuntos
Ansiedade , Microbioma Gastrointestinal , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ondas de Rádio/efeitos adversos , Inflamassomos/metabolismo , Neurônios , Masculino , Comportamento Animal/efeitos da radiação
4.
Environ Sci Pollut Res Int ; 31(21): 31015-31027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619766

RESUMO

The 5G sub-6 GHz radio frequency (RF) electromagnetic fields (EMF) are the most widely used in China's communications. The public has expressed concerns about possible brain health effects of the higher frequency bands in 5G compared to 2G, 3G, and 4G bands. It is imperative to empirically investigate the potential health hazards of these novel frequency bands in 5G communication technology. This study evaluates the assessment of brain tissue dose coupling from sub-6 GHz band EMF emitted by base stations in China. Based on the 3D virtual human body model, the simulation environment was established. Dose including specific absorption rate (SAR) and internal electric field (IEF) between 2G, 3G, and 4G bands and 5G sub-6 GHz was investigated using normalized exposure values and exposure limits. The results indicate that the sub-6 GHz high-frequency band of 5G has the lowest dose value. It can be concluded that high-frequency electromagnetic radiation in 5G sub-6 GHz reduces the dose and health threats to the brain. This provides strong support for the promotion of 5G commutation in China and other regions.


Assuntos
Encéfalo , Campos Eletromagnéticos , Ondas de Rádio , China , Humanos , Encéfalo/efeitos da radiação , Radiação Eletromagnética
5.
Cell Commun Signal ; 22(1): 216, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570868

RESUMO

BACKGROUND: Radiation-induced brain injury (RIBI) is a common and severe complication during radiotherapy for head and neck tumor. Repetitive transcranial magnetic stimulation (rTMS) is a novel and non-invasive method of brain stimulation, which has been applied in various neurological diseases. rTMS has been proved to be effective for treatment of RIBI, while its mechanisms have not been well understood. METHODS: RIBI mouse model was established by cranial irradiation, K252a was daily injected intraperitoneally to block BDNF pathway. Immunofluorescence staining, immunohistochemistry and western blotting were performed to examine the microglial pyroptosis and hippocampal neurogenesis. Behavioral tests were used to assess the cognitive function and emotionality of mice. Golgi staining was applied to observe the structure of dendritic spine in hippocampus. RESULTS: rTMS significantly promoted hippocampal neurogenesis and mitigated neuroinflammation, with ameliorating pyroptosis in microglia, as well as downregulation of the protein expression level of NLRP3 inflammasome and key pyroptosis factor Gasdermin D (GSDMD). BDNF signaling pathway might be involved in it. After blocking BDNF pathway by K252a, a specific BDNF pathway inhibitor, the neuroprotective effect of rTMS was markedly reversed. Evaluated by behavioral tests, the cognitive dysfunction and anxiety-like behavior were found aggravated with the comparison of mice in rTMS intervention group. Moreover, the level of hippocampal neurogenesis was found to be attenuated, the pyroptosis of microglia as well as the levels of GSDMD, NLRP3 inflammasome and IL-1ß were upregulated. CONCLUSION: Our study indicated that rTMS notably ameliorated RIBI-induced cognitive disorders, by mitigating pyroptosis in microglia and promoting hippocampal neurogenesis via mediating BDNF pathway.


Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Camundongos , Animais , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Microglia/metabolismo , Piroptose , Inflamassomos/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Cognição , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Neurogênese/efeitos da radiação
6.
Sci Rep ; 14(1): 3571, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347014

RESUMO

With the rapid development of 5G networks, the influence of the radiofrequency field (RF) generated from 5G communication equipment on human health is drawing increasing attention in public. The study aimed at assessing the effects of long-term exposure to 4.9 GHz (one of the working frequencies of 5G communication) RF field on fecal microbiome and metabolome profiles in adult male C57BL/6 mice. The animals were divided into Sham group and radiofrequency group (RF group). For RF group, the mice were whole body exposed to 4.9 GHz RF field for three weeks, 1 h/d, at average power density (PD) of 50 W/m2. After RF exposure, the mice fecal samples were collected to detect gut microorganisms and metabolites by 16S rRNA gene sequencing and LC-MS method, respectively. The results showed that intestinal microbial compositions were altered in RF group, as evidenced by reduced microbial diversity and changed microbial community distribution. Metabolomics profiling identified 258 significantly differentially abundant metabolites in RF group, 57 of which can be classified to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Besides, functional correlation analysis showed that changes in gut microbiota genera were significantly correlated with changes in fecal metabolites. In summary, the results suggested that altered gut microbiota and metabolic profile are associated with 4.9 GHz radiofrequency exposure.


Assuntos
Metaboloma , Microbiota , Humanos , Adulto , Camundongos , Masculino , Animais , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Metaboloma/genética , Metabolômica/métodos , Fezes
7.
Ecotoxicol Environ Saf ; 270: 115898, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171101

RESUMO

Cranial radiotherapy is an important treatment for intracranial and head and neck tumors. To investigate the effects of cranial irradiation (C-irradiation) on gut microbiota and metabolomic profile, the feces, plasma and cerebral cortex were isolated after exposing mice to cranial X-ray irradiation at a dose rate of 2.33 Gy/min (5 Gy/d for 4 d consecutively). The gut microorganisms and metabolites were detected by 16 S rRNA gene sequencing method and LC-MS method, respectively. We found that compared with sham group, the gut microbiota composition changed at 2 W and 4 W after C-irradiation at the genus level. The fecal metabolomics showed that compared with Sham group, 44 and 66 differential metabolites were found to be annotated into metabolism pathways at 2 W and 4 W after C-irradiation, which were significantly enriched in the arginine and proline metabolism. Metabolome analysis of serum and cerebral cortex showed that, at 4 W after C-irradiation, the expression pattern of metabolites in serum samples of mice was similar to that of sham group, and the cerebral cortex metabolites of the two groups were completely separated. KEGG functional analysis showed that serum and brain tissue differential metabolites were respectively enriched in tryptophan metabolism, and arginine proline metabolism. The correlation analysis showed that the changes of gut microbiota genera were significantly correlated with the changes of metabolism, especially Helicobacter, which was significantly correlated with many different metabolites at 4 W after C-irradiation. These data suggested that C-irradiation could affect the gut microbiota and metabolism profile, even at relatively long times after C-irradiation.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Raios X , Metabolômica/métodos , Fezes , Irradiação Craniana , Arginina/farmacologia , Prolina/farmacologia , RNA Ribossômico 16S/genética
8.
Electromagn Biol Med ; 42(2): 41-50, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37549098

RESUMO

The effects of environmental radiofrequency electromagnetic fields (RF-EMF) on embryonic neural stem cells have not been determined, particularly at the proteomic level. This study aims to elucidate the effects of environmental levels of RF-EMF radiation on embryonic neural stem cells. Neuroectodermal stem cells (NE-4C cells) were randomly divided into a sham group and an RF group, which were sham-exposed and continuously exposed to a 1950 MHz RF-EMF at 2 W/kg for 48 h. After exposure, cell proliferation was determined by a Cell Counting Kit-8 (CCK8) assay, the cell cycle distribution and apoptosis were measured by flow cytometry, protein abundance was detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and mRNA expression was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). We did not detect differences in cell proliferation, cell cycle distribution, and apoptosis between the two groups. However, we detected differences in the abundance of 23 proteins between the two groups, and some of these differences were consistent with alterations in transcript levels determined by qRT-PCR (P < 0.05). A bioinformatics analysis indicated that the differentially regulated proteins were mainly enriched in 'localization' in the cellular process category; however, no significant pathway alterations in NE-4C cells were detected. We conclude that under the experimental conditions, low-level RF-EMF exposure was not neurotoxic but could induce minor changes in the abundance of some proteins involved in neurodevelopment or brain function.


Assuntos
Campos Eletromagnéticos , Células-Tronco Neurais , Campos Eletromagnéticos/efeitos adversos , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Ondas de Rádio/efeitos adversos
9.
Front Public Health ; 11: 1087161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006533

RESUMO

Background: Recently, concerns about the combined effects of electromagnetic field (EMF) in daily living and occupational environment are rapidly growing. Methods: In this study, we investigated the combined effects of 1-week exposure to electromagnetic pulse (EMP) at 650 kV/m for 1,000 pulses and 4.9 GHz radiofrequency (RF) at 50 W/m2 for 1 h/d in male mice. Open field test, tail suspension test and Y-maze were applied to evaluate anxiety, depression-like behaviors and spatial memory ability, respectively. Results: It was found that compared with Sham group, combined exposure to EMP and RF induced anxiety-like behavior, increased the level of serum S100B and decreased the level of serum 5-HT. The results of quantitative proteomic and KEGG analysis showed that the differentially expressed proteins in hippocampus were enriched in Glutamatergic and GABAergic synapse after combined exposure group, which were verified by western blot. In addition, an obvious histological alteration and autophagy-associated cell death were observed in amygdala instead of hippocampus after combined exposure to EMP and 4.9 GHz RF. Conclusion: Combined exposure to EMP and 4.9 GHz RF could induce emotional behavior alteration, which might be associated with Glutamatergic and GABAergic synapse system of hippocampus and autophagy in amygdala.


Assuntos
Campos Eletromagnéticos , Proteômica , Camundongos , Masculino , Animais , Ansiedade
10.
Int J Environ Health Res ; : 1-12, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36413628

RESUMO

The rapid development of 5G network technology has gained much popularity as well as concerns about its adverse effects. In this study, we investigated the effects of 4.9 GHz (one of working frequencies of 5G communication) radiofrequency (RF) field on emotional behaviours and spatial memory in adult male mice. Open field test (OFT), tail suspension test (TST) and Y maze were used to evaluate anxiety, depression-like behaviour and spatial memory ability, respectively. It was found that the anxiety-like behaviour and spatial memory ability of mice did not change, but the depression-like behaviour was induced in mice after 4.9 GHz RF exposure. In addition, the number of neurons significantly reduced and the level of pyroptosis obviously increased in amygdala rather than hippocampus. These results suggested that 4.9 GHz RF exposure could induce depression-like behaviour, which might be associated with the neuronal pyroptosis in amygdala.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...