Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.138
Filtrar
1.
Environ Pollut ; : 124663, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097257

RESUMO

Nanoplastics (NPs) are abundant in ocean environments, leading to environmental pollution and notable disruptions to the physiological functions of marine animals. To investigate the toxic effects of NPs on echinoderms, specifically sea cucumbers (Apostichopus japonicus), they were exposed to varying concentrations of NPs (0, 102, 104 particles/L) for 14 d. Subsequently, the 102 particles/L exposure group was purified for 35 d to elucidate the impact of both NPs exposure and purification on the intestinal bacteria structure and function. The results showed that the richness and variety of intestinal bacteria in sea cucumbers significantly reduced under NPs exposure, and then they could be restored to the pre-exposure treatment state after 35 d of purification. With the increase of NPs exposure concentration in the environment, the intestinal core bacteria gradually changed from Firmicutes and Proteobacteria to Pseudoalteromonas and Vibrio. The KEGG ( Kyoto Encyclopedia of Genes and Genomes ) pathway database annotated that the gut microbiota of sea cucumbers was significantly downregulated in the glycosylation, carbohydratic and amino acid metabolic pathways (P < 0. 05), exogenous substance biodegradation and metabolism, DNA replication and repair pathways were significantly up-regulated (P < 0.05) under the exposure of NPs. In addition, nanoplastics exposure simplified the symbiotic network relationships of the gut bacteria, reduced the selective effect of host on the intestinal bacteria, and increased stochasticity. In conclusion, waterborne NPs can adversely affect the structure and function of sea cucumber intestinal bacteria, with these effects persisting for a duration. However, as the purification time lengthens, these adverse effects gradually diminish. This study aims to provide some theoretical basis for the biotoxic effects of NPs.

2.
Nat Commun ; 15(1): 6481, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090118

RESUMO

The safety of energy storage devices is increasingly crucial due to the growing requirements for application under harsh conditions. Effective methods for enhancing robustness without compromising functionality are necessary. Here we present an impact-resistant, ready-to-use supercapacitor constructed from self-healable hydrogel electrolyte-infused lattice electrodes. Three-dimensional-printed carbon-coated silicon oxycarbide current collectors provide mechanical protection, with compressive stress, Young's modulus, and energy absorption up to 70.61 MPa, 2.75 GPa, and 92.15 kJ/m3, respectively. Commercially viable polyaniline and self-healable polyvinyl alcohol hydrogel are used as active coatings and electrolytes. I-wrapped package structured supercapacitor electrode exhibits a static specific capacitance of 585.51 mF/cm3 at 3 mA/cm3, with an energy density of 97.63 µWh/cm3 at a power density of 0.5 mW/cm3. It maintains operational integrity under extreme conditions, including post-impact with energy of 0.3 J/cm3, dynamic loading ranging from 0 to 18.83 MPa, and self-healing after electrolyte damage, demonstrating its promise for applications in extreme environments.

3.
Biology (Basel) ; 13(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39056689

RESUMO

To screen for immune indicators closely related to disease resistance, two species of sea urchin susceptible to black mouth disease (Strongylocentrotus intermedius, S. intermedius ♀ × Heliocidaris crassispina ♂) and three species of sea urchin resistant to black mouth disease (H. crassispina, H. crassispina ♀ × S. intermedius ♂ and Mesocentrotus nudus) were artificially infected with the black mouth pathogen Vibrio echinoideorum. The phagocytosis-related immune indices of the five sea urchin species were compared at different time points post-infection. The results demonstrated that the parameters such as apoptotic rate of phagocytes, mean contribution value (MCV) of single effective phagocyte on Acid Phosphatase (ACP), Reactive Oxygen Species (ROS), and Total Antioxidant Capacity (T-AOC) of the five sea urchin species first increased and then decreased after infection. The key time points were 3 h to 6 h and 48 h post-infection when the black mouth disease-resistant and susceptible sea urchins demonstrated differences. At 3 h or 6 h post-infection, the up-regulation folds in MCV of ACP, ROS and T-AOC of black mouth disease-resistant sea urchins were considerably higher than that of the susceptible sea urchins. At 6 h post-infection, the apoptosis rate and the phagocytic index (PI) of the black mouth disease-resistant sea urchins were significantly higher than those of the susceptible sea urchins (p < 0.05). At 48 h post-infection, the necrosis rate of phagocytes, MCV of ACP and MCV of ROS of the black mouth disease-resistant sea urchins were significantly lower than those of the susceptible sea urchins (p < 0.05). The apoptosis and necrosis rate of phagocytes, PI, and MCV on ACP, ROS may be used as indicators of disease resistance in sea urchins. Disease resistance standards in immune indices can be summarized as phagocytosis increases greatly in the early infection stage and decreases timely to a normal level after killing the pathogen in a short period.

4.
Nat Commun ; 15(1): 5989, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013867

RESUMO

Single-cell sequencing is a crucial tool for dissecting the cellular intricacies of complex diseases. Its prohibitive cost, however, hampers its application in expansive biomedical studies. Traditional cellular deconvolution approaches can infer cell type proportions from more affordable bulk sequencing data, yet they fall short in providing the detailed resolution required for single-cell-level analyses. To overcome this challenge, we introduce "scSemiProfiler", an innovative computational framework that marries deep generative models with active learning strategies. This method adeptly infers single-cell profiles across large cohorts by fusing bulk sequencing data with targeted single-cell sequencing from a few rigorously chosen representatives. Extensive validation across heterogeneous datasets verifies the precision of our semi-profiling approach, aligning closely with true single-cell profiling data and empowering refined cellular analyses. Originally developed for extensive disease cohorts, "scSemiProfiler" is adaptable for broad applications. It provides a scalable, cost-effective solution for single-cell profiling, facilitating in-depth cellular investigation in various biological domains.


Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Aprendizado Profundo , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Aprendizado de Máquina Supervisionado
5.
PeerJ ; 12: e17677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974410

RESUMO

Background: The study aims to evaluate the diagnostic efficacy of contrast-enhanced ultrasound (CEUS) and shear-wave elastography (SWE) in detecting small malignant breast nodules in an effort to inform further refinements of the Breast Imaging Reporting and Data System (BI-RADS) classification system. Methods: This study retrospectively analyzed patients with breast nodules who underwent conventional ultrasound, CEUS, and SWE at Gongli Hospital from November 2015 to December 2019. The inclusion criteria were nodules ≤ 2 cm in diameter with pathological outcomes determined by biopsy, no prior treatments, and solid or predominantly solid nodules. The exclusion criteria included pregnancy or lactation and low-quality images. Imaging features were detailed and classified per BI-RADS. Diagnostic accuracy was assessed using receiver operating characteristic curves. Results: The study included 302 patients with 305 breast nodules, 113 of which were malignant. The diagnostic accuracy was significantly improved by combining the BI-RADS classification with CEUS and SWE. The combined approach yielded a sensitivity of 88.5%, specificity of 87.0%, positive predictive value of 80.0%, negative predictive value of 92.8%, and accuracy of 87.5% with an area under the curve of 0.877. Notably, 55.8% of BI-RADS 4A nodules were downgraded to BI-RADS 3 and confirmed as benign after pathological examination, suggesting the potential to avoid unnecessary biopsies. Conclusion: The integrated use of the BI-RADS classification, CEUS, and SWE enhances the accuracy of differentiating benign and malignant small breast nodule, potentially reducing the need for unnecessary biopsies.


Assuntos
Neoplasias da Mama , Meios de Contraste , Técnicas de Imagem por Elasticidade , Ultrassonografia Mamária , Humanos , Feminino , Técnicas de Imagem por Elasticidade/métodos , Estudos Retrospectivos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Pessoa de Meia-Idade , Adulto , Ultrassonografia Mamária/métodos , Idoso , Sensibilidade e Especificidade , Curva ROC , Mama/diagnóstico por imagem , Mama/patologia
6.
Antioxidants (Basel) ; 13(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39061914

RESUMO

A 70-day feeding experiment was performed to investigate the effects of dietary vitamin E at different addition levels (0, 100, 200, and 400 mg/kg) on the growth, collagen content, antioxidant capacity, and expressions of genes related to the transforming growth factor beta (TGF-ß)/Sma- and Mad-related protein (SMAD) signaling pathway in sea cucumbers (Apostichopus japonicus). The results showed that the A. japonicus in the group with 200 mg/kg vitamin E exhibited significantly higher growth rates, hydroxyproline (Hyp) and type III collagen contents, and superoxide dismutase (SOD) activity, as well as the upregulation of genes related to Tenascin, SMAD1, and TGF-ß. Additionally, the A. japonicus in the group with 100 mg/kg vitamin E exhibited significantly higher body-wall indexes, denser collagen arrangements, improved texture quality, higher activities of glutathione peroxidase (GSH-Px) and peroxidase (POD), as well as the upregulation of genes related to collagen type I alpha 2 chain (COL1A2), collagen type III alpha 1 chain (COL3A1), and Sp-Smad2/3 (SMAD2/3). In contrast, the A. japonicus in the group with 400 mg/kg vitamin E showed a decrease in the growth rates, reduced Hyp contents, increased type I collagen contents, collagen fiber aggregation and a harder texture, along with the downregulation of genes related to the TGF-ß/SMAD signaling pathway. Furthermore, the A. japonicus in the group with 400 mg/kg exhibited oxidative stress, reflected by the lower activities of SOD, GSH-Px, and POD. These results indicated that A. japonicus fed diets with the addition of 100-200 mg/kg vitamin E had improved collagen retention and texture quality by increasing the activities of antioxidant enzymes and the expressions of genes in the TGF-ß/SMAD signaling pathway. However, the excessive addition of vitamin E (400 mg/kg) induced oxidative stress, which could increase the collagen degradation and fibrosis and pose a threat to the growth and texture quality of A. japonicus.

7.
Micromachines (Basel) ; 15(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39064354

RESUMO

In microfluidic systems, it is important to maintain flow stability to execute various functions, such as chemical reactions, cell transportation, and liquid injection. However, traditional flow sources, often bulky and prone to unpredictable fluctuations, limit the portability and broader application of these systems. Existing fluidic stabilizers, typically designed for specific flow sources, lack reconfigurability and adaptability in terms of the stabilization ratios. To address these limitations, a modular and standardized stabilizer system with tunable stabilization ratios is required. In this work, we present a Lego-like modular microfluidic stabilizer system, which is fabricated using 3D printing and offers multi-level stabilization combinations and customizable stabilization ratios through the control of fluidic RC constants, making it adaptable to various microfluidic systems. A simplified three-element circuit model is used to characterize the system by straightforwardly extracting the RC constant without intricate calculations of the fluidic resistance and capacitance. By utilizing a simplified three-element model, the stabilizer yields two well-fitted operational curves, demonstrating an R-square of 0.95, and provides an optimal stabilization ratio below 1%. To evaluate the system's effectiveness, unstable input flow at different working frequencies is stabilized, and droplet generation experiments are conducted and discussed. The results show that the microfluidic stabilizer system significantly reduces flow fluctuations and enhances droplet uniformity. This system provides a new avenue for microfluidic stabilization with a tunable stabilization ratio, and its plug-and-play design can be effectively applied across diverse applications to finely tune fluid flow behaviors in microfluidic devices.

8.
Genome Biol ; 25(1): 198, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075536

RESUMO

Single-cell multi-omics data reveal complex cellular states, providing significant insights into cellular dynamics and disease. Yet, integration of multi-omics data presents challenges. Some modalities have not reached the robustness or clarity of established transcriptomics. Coupled with data scarcity for less established modalities and integration intricacies, these challenges limit our ability to maximize single-cell omics benefits. We introduce scCross, a tool leveraging variational autoencoders, generative adversarial networks, and the mutual nearest neighbors (MNN) technique for modality alignment. By enabling single-cell cross-modal data generation, multi-omics data simulation, and in silico cellular perturbations, scCross enhances the utility of single-cell multi-omics studies.


Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Simulação por Computador , Genômica/métodos , Software , Biologia Computacional/métodos , Multiômica
9.
Neuron ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39002543

RESUMO

One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.

10.
World J Clin Cases ; 12(21): 4483-4490, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39070817

RESUMO

BACKGROUND: Renal stones ranging 20-40 mm are very common in China. Although no large-sample clinical studies have confirmed the clinical efficacy and safety of this method, there is also a lack of comparative data with traditional treatment. AIM: To investigate the clinical efficacy of flexible ureteroscopy (FURS) and percutaneous nephrolithotomy (PCNL) by postoperative stone clearance and changes in soluble vascular cell adhesion molecule 1 (sVCAM-1) and kidney injury molecule 1 (KIM-1) levels in patients with large kidney stones (> 2 cm in diameter). METHODS: This single-center observational study was performed at a Chinese hospital between January 1, 2021, and October 30, 2023. All 250 enrolled patients were diagnosed with large kidney stones (> 2 cm) and divided into a FURS group (n = 145) and a PCNL group (n = 105) by the surgical method. The FURS group was treated with flexible ureteroscopy and the PCNL group was treated with percutaneous nephrolithotomy. The operation time, time to palinesthesia, intraoperative blood loss, drop in hemoglobin, length of hospital stay, stone clearance rate, and complications were recorded in the two groups. Preoperative and postoperative serum sVCAM-1 levels, erythrocyte sedimentation rate (ESR), urine KIM-1 levels, preoperative and postoperative pain visual analog scale (VAS) and Wisconsin Stone Quality of Life Questionnaire (WISQOL) scores were also documented. RESULTS: All 250 eligible patients completed the follow-up. There were no significant differences in baseline characteristics between the two groups (P > 0.05). The operation time in the FURS group was significantly greater than that in the PCNL group. The time to ambulation, intraoperative blood loss, decrease in hemoglobin, and length of hospital stay were significantly lower in the FURS group than in the PCNL group. The FURS group also had a significantly higher stone clearance rate and a lower incidence of postoperative complications. There was no significant difference in antibiotic use between the groups. Postoperative serum sVCAM-1 levels, urine KIM-1 levels, and VAS scores were lower in the FURS group than in the PCNL group, but postoperative ESR and WISQOL scores were greater in the FURS group than in the PCNL group. CONCLUSION: FURS demonstrated superior clinical efficacy in treating large kidney stones (> 2 cm in diameter) compared PCNL. It not only improved the postoperative stone clearance rate and reduced complications and recovery time but also positively affected serum SCM-1, ESR, and urine KIM-1 levels, subsequent improvement of patient quality of life.

11.
ACS Biomater Sci Eng ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079050

RESUMO

Intervertebral disc degeneration (IVDD) is a prevalent chronic condition causing spinal pain and functional impairment. This study investigates the role of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUCMSCs) in regulating IVDD. Using RNA-seq, we analyzed differential expressions of lncRNA and miRNA in nucleus pulposus tissues from various mouse groups. We identified key regulatory molecules, MALAT1 and miRNA-138-5p, which contribute to IVDD. Further experiments demonstrated that MALAT1 can up-regulate SLC7A11 expression by competitively binding to miR-138-5p, forming a MALAT1/miR-138-5p/SLC7A11 coexpression regulatory network. This study elucidates the molecular mechanism by which hUCMSC-derived EVs regulate IVDD and could help develop novel therapeutic strategies for treating this condition. Our findings demonstrate that hUCMSCs-EVs inhibit ferroptosis in nucleus pulposus cells, thereby improving IVDD. These results highlight the therapeutic potential of hUCMSCs-EVs in ameliorating the development of IVDD, offering significant scientific and clinical implications for new treatments.

12.
Commun Biol ; 7(1): 923, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085477

RESUMO

The emergence of single-cell Hi-C (scHi-C) technology has provided unprecedented opportunities for investigating the intricate relationship between cell cycle phases and the three-dimensional (3D) structure of chromatin. However, accurately predicting cell cycle phases based on scHi-C data remains a formidable challenge. Here, we present scHiCyclePred, a prediction model that integrates multiple feature sets to leverage scHi-C data for predicting cell cycle phases. scHiCyclePred extracts 3D chromatin structure features by incorporating multi-scale interaction information. The comparative analysis illustrates that scHiCyclePred surpasses existing methods such as Nagano_method and CIRCLET across various metrics including accuracy (ACC), F1 score, Precision, Recall, and balanced accuracy (BACC). In addition, we evaluate scHiCyclePred against the previously published CIRCLET using the dataset of complex tissues (Liu_dataset). Experimental results reveal significant improvements with scHiCyclePred exhibiting improvements of 0.39, 0.52, 0.52, and 0.39 over the CIRCLET in terms of ACC, F1 score, Precision, and Recall metrics, respectively. Furthermore, we conduct analyses on three-dimensional chromatin dynamics and gene features during the cell cycle, providing a more comprehensive understanding of cell cycle dynamics through chromatin structure. scHiCyclePred not only offers insights into cell biology but also holds promise for catalyzing breakthroughs in disease research. Access scHiCyclePred on GitHub at https:// github.com/HaoWuLab-Bioinformatics/ scHiCyclePred .


Assuntos
Ciclo Celular , Cromatina , Aprendizado Profundo , Análise de Célula Única , Análise de Célula Única/métodos , Cromatina/metabolismo , Cromatina/química , Humanos , Biologia Computacional/métodos
13.
Int Heart J ; 65(3): 498-505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825494

RESUMO

This study aimed to explore the expression of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in patients with acute myocardial infarction (AMI) and its inflammatory regulation mechanism through miR-211/interleukin 10 (IL-10) axis.A total of 75 participants were enrolled in this study: 25 healthy people in the control group, 25 patients with stable angina pectoris (SAP) in the SAP group, and 25 patients with AMI in the AMI group. Real-time qPCR was used to detect mRNA expression levels of NEAT1, miR-211, and IL-10. The interaction between miR-211, NEAT1, and IL-10 was confirmed by dual-luciferase reporter assay, and protein expression was detected using western blot.High expression of NEAT1 in peripheral blood mononuclear cells (PBMCs) of patients with AMI was negatively related to serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), IL-6, and IL-1ß and was positively correlated with left ventricular ejection fraction (LVEF). In THP-1 cells, miR-211 was confirmed to target and inhibit IL-10 expression. NEAT1 knockdown and miR-211-mimic markedly decreased IL-10 protein levels, whereas anti-miR-211 markedly increased IL-10 protein levels. Importantly, miR-211 level was negatively related to NEAT1 and IL-10 levels, whereas IL-10 level was positively related to the level of NEAT1 expression in PBMCs of patients with AMI.LncRNA NEAT1 was highly expressed in PBMCs of patients with AMI, and NEAT1 suppressed inflammation via miR-211/IL-10 axis in PBMCs of patients with AMI.


Assuntos
Interleucina-10 , Leucócitos Mononucleares , MicroRNAs , Infarto do Miocárdio , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/sangue , MicroRNAs/sangue , MicroRNAs/genética , Interleucina-10/sangue , Interleucina-10/metabolismo , Infarto do Miocárdio/sangue , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inflamação/genética , Inflamação/sangue , Inflamação/metabolismo , Estudos de Casos e Controles
14.
ACS Omega ; 9(24): 26213-26221, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911735

RESUMO

Accurate and rapid evaluation of density is crucial for evaluating the packing and combustion characteristics of high-energy-density fuels (HEDFs). This parameter is pivotal in the selection of high-performance HEDFs. Our study leveraged a polycyclic compound density data set and quantum chemical (QC) descriptors to establish a correlation with the target properties using the XGBoost algorithm. We utilized a recursive feature elimination method to simplify the model and developed a concise and interpretable density prediction model incorporating only six QC descriptors. The model demonstrated robust performance, achieving coefficients of determination (R 2) of 0.967 and 0.971 for internal and external test sets, respectively, and root-mean-square errors (RMSE) of 0.031 and 0.027 g/cm3, respectively. Compared to the other two mainstream methods, the marginal discrepancy between the predicted and actual molecular densities underscores the model's superior predictive ability and more usefulness for energy density calculation. Furthermore, we developed a web server (SesquiterPre, https://sespre.cmdrg.com/#/) that can simultaneously calculate the density, enthalpy of combustion, and energy density of sesquiterpenoid HEDFs, which greatly facilitates the use of researchers and is of great significance for accelerating the design and screening of novel sesquiterpenoid HEDFs.

15.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38915677

RESUMO

Motor skill learning induces long-lasting synaptic plasticity at not only the inputs, such as dendritic spines1-4, but also at the outputs to the striatum of motor cortical neurons5,6. However, very little is known about the activity and structural plasticity of corticostriatal axons during learning in the adult brain. Here, we used longitudinal in vivo two-photon imaging to monitor the activity and structure of thousands of corticostriatal axonal boutons in the dorsolateral striatum in awake mice. We found that learning a new motor skill induces dynamic regulation of axonal boutons. The activities of motor corticostriatal axonal boutons exhibited selectivity for rewarded movements (RM) and un-rewarded movements (UM). Strikingly, boutons on the same axonal branches showed diverse responses during behavior. Motor learning significantly increased the fraction of RM boutons and reduced the heterogeneity of bouton activities. Moreover, motor learning-induced profound structural dynamism in boutons. By combining structural and functional imaging, we identified that newly formed axonal boutons are more likely to exhibit selectivity for RM and are stabilized during motor learning, while UM boutons are selectively eliminated. Our results highlight a novel form of plasticity at corticostriatal axons induced by motor learning, indicating that motor corticostriatal axonal boutons undergo dynamic reorganization that facilitates the acquisition and execution of motor skills.

16.
Biosens Bioelectron ; 261: 116474, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38870827

RESUMO

Multichannel arrays capable of real-time sensing of neuromodulators in the brain are crucial for gaining insights into new aspects of neural communication. However, measuring neurochemicals, such as dopamine, at low concentrations over large areas has proven challenging. In this research, we demonstrate a novel approach that leverages the scalability and processing power offered by microelectrode array devices integrated with a functionalized, high-density microwire bundle, enabling electrochemical sensing at an unprecedented scale and spatial resolution. The sensors demonstrate outstanding selective molecular recognition by incorporating a selective polymeric membrane. By combining cutting-edge commercial multiplexing, digitization, and data acquisition hardware with a bio-compatible and highly sensitive neurochemical interface array, we establish a powerful platform for neurochemical analysis. This multichannel array has been successfully utilized in vitro and ex vivo systems. Notably, our results show a sensing area of 2.25 mm2 with an impressive detection limit of 820 pM for dopamine. This new approach paves the way for investigating complex neurochemical processes and holds promise for advancing our understanding of brain function and neurological disorders.


Assuntos
Técnicas Biossensoriais , Dopamina , Técnicas Eletroquímicas , Limite de Detecção , Microeletrodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Dopamina/análise , Animais , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Encéfalo/metabolismo , Humanos , Neurotransmissores/análise
17.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895486

RESUMO

The striatum is required for normal action selection, movement, and sensorimotor learning. Although action-specific striatal ensembles have been well documented, it is not well understood how these ensembles are formed and how their dynamics may evolve throughout motor learning. Here we used longitudinal 2-photon Ca2+ imaging of dorsal striatal neurons in head-fixed mice as they learned to self-generate locomotion. We observed a significant activation of both direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs, respectively) during early locomotion bouts and sessions that gradually decreased over time. For dSPNs, onset- and offset-ensembles were gradually refined from active motion-nonspecific cells. iSPN ensembles emerged from neurons initially active during opponent actions before becoming onset- or offset-specific. Our results show that as striatal ensembles are progressively refined, the number of active nonspecific striatal neurons decrease and the overall efficiency of the striatum information encoding for learned actions increases.

18.
Genes (Basel) ; 15(5)2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790259

RESUMO

To establish a parentage identification method for Strongylocentrotus intermedius, 15 microsatellite loci and simple sequence repeat sequencing (SSR-seq) technology were used to perform SSR sequencing and typing of the validation population with known pedigree information and the simulation population. Cervus v3.0 was used for gene frequency statistics, simulated analysis, and parentage identification analysis. The results showed that, in validation population, using 15 microsatellite loci, the highest success rate of parent pairs identification was 86%, the highest success rate of female parent identification was 93%, and the highest success rate of male parent identification was 90%. The simulated population was analyzed using 12-15 loci, and the identification rate was up to 90%. In cases where accurate parentage was not achieved, individuals could exhibit genetic similarities with 1-3 male or female parents. Individuals identified as lacking a genetic relationship can be selected as parents to prevent inbreeding. This study shows that parent pairs or single parents of most offspring can be identified successfully using these 15 selected loci. The results lay a foundation for the establishment of a parentage identification method for S. intermedius.


Assuntos
Repetições de Microssatélites , Strongylocentrotus , Animais , Repetições de Microssatélites/genética , Masculino , Feminino , Strongylocentrotus/genética , Linhagem , Análise de Sequência de DNA/métodos , Frequência do Gene/genética
19.
Nat Commun ; 15(1): 4659, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821939

RESUMO

In the absence of externally applied mechanical loading, it would seem counterintuitive that a solid particle sitting on the surface of another solid could not only sink into the latter, but also continue its rigid-body motion towards the interior, reaching a depth as distant as thousands of times the particle diameter. Here, we demonstrate such a case using in situ microscopic as well as bulk experiments, in which diamond nanoparticles ~100 nm in size move into iron up to millimeter depth, at a temperature about half of the melting point of iron. Each diamond nanoparticle is nudged as a whole, in a displacive motion towards the iron interior, due to a local stress induced by the accumulation of iron atoms diffusing around the particle via a short and easy interfacial channel. Our discovery underscores an unusual mass transport mode in solids, in addition to the familiar diffusion of individual atoms.

20.
RSC Adv ; 14(24): 16945-16950, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799211

RESUMO

The syntheses of high-spin organic polymers have been a daunting task due to the highly reactive nature of organic radicals, especially when they are ferromagnetically coupled. In this paper, we report our approach to obtain high-spin organic polymers, in which a reasonably stable fluorenyl radical was employed as the primary radical unit, and s-triazine serves as the connector that facilitates ferromagnetic coupling between them. Initially, the diamagnetic polymer precursor was synthesized by cyclotrimerization of a cyano-monomer. Subsequently, the high-spin polymers were obtained by oxidizing corresponding anionic polymers using O2 (6) or I2 (7). The temperature-dependent magnetic moments, and field-dependent magnetization data obtained from SQUID measurements revealed ferromagnetic couplings between primary radical units, with coupling J = 7.5 cm-1 and 38.6 cm-1. The percentages of primary unit in the radical form are 29%, and 47% for 6 and 7, respectively. Notably, this marks the first reported instance of a high-spin fluorenyl radical polymer exhibiting ferromagnetic coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...