Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 279(Pt 4): 135310, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270904

RESUMO

Sulfation of polysaccharides can affect their biological activity by introducing sulfate groups. Skin burns occur regularly and have a great impact on normal survival. In this study, sulfated arabinogalactan (SAG) was prepared by sulfation, and polyvinyl alcohol (PVA) was used to prepare hydrogels for the treatment of scalded skin in mouse. The results show that the main chain of SAG consists of →3-ß-D-Galactose (Gal)-(1, →3, 6)-ß-D-Gal-(1 and →4)-ß-d-Glucose (Glc)-(1. The chain is a neutral polysaccharide composed of T-ß-L-Arabinose (Araf)-(1→, with a molecular weight of 17.9 kDa. At the same time, PVA + SAG hydrogel can promote the scald repair of mouse skin by promoting collagen deposition and angiogenesis, and regulating the TLR4/MyD88/NF-κB signaling pathway. Interestingly, the effect of SAG on promoting the repair of scald wounds is enhanced after AG is derivatized by sulfation. Therefore, the preparation of SAG by sulfation can promote scald repair, and has great application potential in the field of food and medicine.

2.
Int J Biol Macromol ; 279(Pt 3): 135324, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241996

RESUMO

Wound healing in diabetic patients is often complicated by issues like inflammation, infection, bleeding, and fluid retention. To tackle these challenges, it is essential to create hydrogel dressings with anti-inflammatory, antibacterial, and antioxidative properties. This study aimed to synthesize Phlorizin-Liposomes (PL) through the thin-film dispersion method and integrate them into an oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS) hydrogel scaffold, resulting in an OSA/CMCS/PL (PLOCS) composite hydrogel via a Schiff base reaction. Characterization of the composite was performed using FTIR, TEM, and SEM techniques. The research assessed the swelling behavior, antibacterial effectiveness, and biocompatibility of the PLOCS composite hydrogel, while also investigating how PLOCS facilitates diabetic wound healing. The results demonstrated that PLOCS effectively controls drug release, possesses favorable swelling and degradation characteristics, and shows significant antioxidative properties along with in vitro biocompatibility. Histological analysis confirmed that PLOCS supports the proliferation of healthy epithelial tissue and collagen production. Western blotting indicated that PLOCS diminishes inflammation by inhibiting the TLR4/NF-κB/MyD88 pathway and activates Nrf2 to boost wound healing, increasing the levels of antioxidative enzymes such as HO-1, NQO1, and GCLC. In summary, PLOCS presents a promising new option for advanced wound dressings aimed at treating diabetic ulcers.

3.
Carbohydr Polym ; 345: 122585, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227125

RESUMO

Chemical crosslinking is a method widely used to enhance the mechanical strength of biopolymer-based scaffolds. Polysaccharides are natural and biodegradable carbohydrate polymers that can act as crosslinking agents to promote the formation of scaffolds. Compared to synthetic crosslinking agents, Polysaccharide-based crosslinking agents have better biocompatibility for cell adhesion and growth. Traditional Chinese medicine has special therapeutic effects on various diseases and is rich in various bioactive ingredients. Among them, polysaccharides have immune regulatory, antioxidant, and anti-inflammation effects, which allow them to not only act as crosslinking agents but endow the scaffold with greater bioactivity. This article focuses on the latest developments of polysaccharide-based crosslinking agents for biomedical scaffolds, including hyaluronic acid, chondroitin sulfate, dextran, alginate, cellulose, gum polysaccharides, and traditional Chinese medicine polysaccharides. Also, we provide a summary and prospects on the research of polysaccharide-based crosslinking agents.


Assuntos
Materiais Biocompatíveis , Reagentes de Ligações Cruzadas , Polissacarídeos , Bases de Schiff , Alicerces Teciduais , Polissacarídeos/química , Polissacarídeos/farmacologia , Reagentes de Ligações Cruzadas/química , Alicerces Teciduais/química , Bases de Schiff/química , Bases de Schiff/farmacologia , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Animais , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia
4.
Carbohydr Polym ; 346: 122614, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245525

RESUMO

Bone defects caused by trauma, infection and congenital diseases still face great challenges. Dihydromyricetin (DHM) is a kind of flavone extracted from Ampelopsis grossedentata, a traditional Chinese medicine. DHM can enhance the osteogenic differentiation of human bone marrow mesenchymal stem cells with the potential to promote bone regeneration. Hydrogel can be used as a carrier of DHM to promote bone regeneration due to its unique biochemical characteristics and three-dimensional structure. In this study, oxidized phellinus igniarius polysaccharides (OP) and L-arginine chitosan (CA) are used to develop hydrogel. The pore size and gel strength of the hydrogel can be changed by adjusting the oxidation degree of oxidized phellinus igniarius polysaccharides. The addition of DHM further reduce the pore size of the hydrogel (213 µm), increase the mechanical properties of the hydrogel, and increase the antioxidant and antibacterial activities of the hydrogel. The scavenging rate of DPPH are 72.30 ± 0.33 %, and the inhibition rate of E.coli and S.aureus are 93.12 ± 0.38 % and 94.49 ± 1.57 %, respectively. In addition, PCAD has good adhesion and biocompatibility, and its extract can effectively promote the osteogenic differentiation of MC3T3-E1 cells. Network pharmacology and molecular docking show that the promoting effect of DHM on osteogenesis may be achieved by activating the PI3K/AKT and MAPK signaling pathways. This is confirmed through in vitro cell experiments and in vivo animal experiments.


Assuntos
Regeneração Óssea , Quitosana , Flavonóis , Hidrogéis , Sistema de Sinalização das MAP Quinases , Osteogênese , Fosfatidilinositol 3-Quinases , Polissacarídeos , Proteínas Proto-Oncogênicas c-akt , Quitosana/química , Quitosana/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Flavonóis/farmacologia , Flavonóis/química , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Polissacarídeos/química , Polissacarídeos/farmacologia , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Arginina/química , Arginina/farmacologia , Oxirredução/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Adesivos/química , Adesivos/farmacologia
5.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275118

RESUMO

In recent years, a wide variety of high-performance and versatile nanofiber membranes have been successfully created using different electrospinning methods. As vehicles for medication, they have been receiving more attention because of their exceptional antibacterial characteristics and ability to heal wounds, resulting in improved drug delivery and release. This quality makes them an appealing choice for treating various skin conditions like wounds, fungal infections, skin discoloration disorders, dermatitis, and skin cancer. This article offers comprehensive information on the electrospinning procedure, the categorization of nanofiber membranes, and their use in dermatology. Additionally, it delves into successful case studies, showcasing the utilization of nanofiber membranes in the field of skin diseases to promote their substantial advancement.


Assuntos
Sistemas de Liberação de Medicamentos , Nanofibras , Nanofibras/química , Humanos , Dermatopatias/tratamento farmacológico , Membranas Artificiais , Dermatologia/métodos
6.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124941

RESUMO

Liver disease is a global health problem that affects the well-being of tens of thousands of people. Dihydroquercetin (DHQ) is a flavonoid compound derived from various plants. Furthermore, DHQ has shown excellent activity in the prevention and treatment of liver injury, such as the inhibition of hepatocellular carcinoma cell proliferation after administration, the normalization of oxidative indices (like SOD, GSH) in this tissue, and the down-regulation of pro-inflammatory molecules (such as IL-6 and TNF-α). DHQ also exerts its therapeutic effects by affecting molecular pathways such as NF-κB and Nrf2. This paper discusses the latest research progress of DHQ in the treatment of various liver diseases (including viral liver injury, drug liver injury, alcoholic liver injury, non-alcoholic liver injury, fatty liver injury, and immune liver injury). It explores how to optimize the application of DHQ to improve its effectiveness in treating liver diseases, which is valuable for preparing potential therapeutic drugs for human liver diseases in conjunction with DHQ.


Assuntos
Quercetina , Quercetina/análogos & derivados , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/química , Humanos , Animais , Hepatopatias/tratamento farmacológico , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Hepatopatias/patologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/lesões , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química
7.
Int Immunopharmacol ; 140: 112780, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39111148

RESUMO

The healing of diabetic wounds has long been a significant challenge in the field of medicine. The elevated sugar levels surrounding diabetic wounds create a conducive environment for harmful bacterial growth, resulting in purulent infections that impede the healing process. Thus, the development of a biomaterial that can enhance the healing of diabetic wounds holds great importance. This study developed electrospun dressings for wound healing by combining traditional Chinese medicine and clay. The study utilized electrospinning technology to prepare polyvinyl alcohol (PVA) nanofiber membranes containing ASB and HNTs. These ASB@HNTs-PVA nanofiber membranes demonstrated rapid hemostasis, along with antibacterial and anti-inflammatory properties, facilitating the recovery of type 2 diabetic (T2D) wounds. Various analyses were conducted to assess the performance of the composite nanofiber membrane, including investigations into its biocompatibility and hemostatic abilities through antibacterial experiments, cell experiments, and mouse liver tail bleeding experiments. Western blot analysis confirmed that the composite nanofiber membrane could decrease the levels of inflammatory factors IL-1ß and TNF-α. A type 2 diabetic mouse model was utilized, with wounds artificially induced on the backs of mice. Application of the nanofiber membrane to the wounds further confirmed its anti-inflammatory effects and ability to enhance wound healing in vivo.


Assuntos
Anti-Inflamatórios , Diabetes Mellitus Tipo 2 , Hemostáticos , Nanofibras , Álcool de Polivinil , Cicatrização , Animais , Nanofibras/química , Cicatrização/efeitos dos fármacos , Álcool de Polivinil/química , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemostáticos/farmacologia , Hemostáticos/química , Masculino , Humanos , Pele/patologia , Pele/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Diabetes Mellitus Experimental , Bandagens , Células RAW 264.7
8.
Int J Pharm ; 661: 124421, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972524

RESUMO

In this paper, a hydrogel material with efficient antibacterial, hemostatic, self-healing, and injectable properties was designed for the treatment of diabetic wounds. Firstly, quaternary ammonium salts were grafted with oxidized sodium alginate, and quaternized oxidized sodium alginate (QOSA) was synthesized. Due to the introduction of quaternary ammonium group it has antibacterial and hemostatic effects, at the same time, due to the presence of aldehyde group it can be reacted with carboxymethyl chitosan (CMCS) to form a hydrogel through the Schiff base reaction. Furthermore, deer antler blood polypeptide (DABP) was loaded into the hydrogel (QOSA&CMCS&DABP), showing good swelling ratio and bacteriostatic effect. In vitro and in vivo experiments demonstrated that the hydrogel not only quickly inhibited hepatic hemorrhage in mice and reduced coagulation index and clotting time in vitro, but also significantly enhanced collagen deposition at the wound site, accelerating wound healing. This demonstrates that the multifunctional hydrogel materials (QOSA&CMCS&DABP) have promising applications in the acceleration of skin wound healing and antibacterial promotion.


Assuntos
Alginatos , Antibacterianos , Quitosana , Hemostáticos , Hidrogéis , Cicatrização , Animais , Alginatos/química , Alginatos/administração & dosagem , Cicatrização/efeitos dos fármacos , Hemostáticos/farmacologia , Hemostáticos/administração & dosagem , Hemostáticos/química , Hidrogéis/administração & dosagem , Quitosana/química , Quitosana/administração & dosagem , Quitosana/análogos & derivados , Camundongos , Masculino , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Diabetes Mellitus Experimental/tratamento farmacológico , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/administração & dosagem , Compostos de Amônio Quaternário/farmacologia , Oxirredução , Colágeno
9.
Int J Biol Macromol ; 273(Pt 2): 133040, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857721

RESUMO

Liver injury caused by type-II diabetes mellitus (DM) is a significant public-health concern worldwide. We used chitosan (CS) to modify dihydromyricetin (DHM)-loaded liposomes (DL) through charge interaction. The effect of CS-modified DL (CDL) on liver injury in mice suffering from DM was investigated in vivo and in vitro. CDL exhibited superior antioxidant capacity and stability. Pharmacokinetic analyses revealed a 3.23- and 1.92-fold increase in the drug concentration-time curve (953.60 ± 122.55 ng/mL/h) in the CDL-treated group as opposed to the DHM-treated group (295.15 ± 25.53 ng/mL/h) and DL-treated group (495.31 ± 65.21 ng/mL/h). The maximum drug concentration in blood (Tmax) of the CDL group saw a 2.26- and 1.21-fold increase compared with that in DHM and DL groups. We observed a 1.49- and 1.31-fold increase in the maximum drug concentration in blood (Cmax) in the CDL group compared with that in DHM and DL groups. Western blotting suggested that CDL could alleviate liver injury in mice suffering from DM by modulating inflammatory factors and the transforming growth factor-ß1/Smad2/Smad3 signaling pathway. In conclusion, modification of liposomes using CS is a viable approach to address the limitations of conventional liposomes and insoluble drugs.


Assuntos
Quitosana , Flavonóis , Lipossomos , Animais , Quitosana/química , Quitosana/farmacologia , Lipossomos/química , Flavonóis/farmacologia , Flavonóis/administração & dosagem , Camundongos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/lesões , Fígado/patologia , Antioxidantes/farmacologia , Antioxidantes/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos
10.
Int J Biol Macromol ; 268(Pt 2): 131670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643919

RESUMO

Bacterial infection, hyperinflammation and hypoxia, which can lead to amputation in severe cases, are frequently observed in diabetic wounds, and this has been a critical issue facing the repair of chronic skin injuries. In this study, a copper-based MOF (TAX@HKUST-1) highly loaded with taxifolin (TAX) with a drug loading of 41.94 ± 2.60 % was prepared. In addition, it has excellent catalase activity, and by constructing an oxygen-releasing hydrogel (PTH) system with calcium peroxide (CaO2), it can be used as a nano-enzyme to promote the generation of oxygen from hydrogen peroxide (H2O2) to provide sufficient oxygen to the wound, and at the same time, solve the problem of the oxidative stress damage caused by excess H2O2 to the cells during the oxygen-releasing process. On the other hand, TAX and HKUST-1 in PTH synergistically promoted antimicrobial and anti-oxidative stress properties, and the bacterial inhibition rate against Staphylococcus aureus and Escherichia coli reached 90 %. In vivo experiments have shown that PTH hydrogel is able to treat diabetic skin repair by inhibiting the expression of inflammation-related proteins and promoting epidermal neogenesis, angiogenesis and collagen deposition.


Assuntos
Alginatos , Quitosana , Hidrogéis , Álcool de Polivinil , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Alginatos/química , Alginatos/farmacologia , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Animais , Álcool de Polivinil/química , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/química , Quercetina/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Escherichia coli/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Camundongos
11.
Carbohydr Polym ; 336: 122115, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670750

RESUMO

To alleviate skull defects and enhance the biological activity of taxifolin, this study utilized the thin-film dispersion method to prepare paclitaxel liposomes (TL). Thiolated chitosan (CSSH)-modified TL (CTL) was synthesized through charge interactions. Injectable hydrogels (BLG) were then prepared as hydrogel scaffolds loaded with TAX (TG), TL (TLG), and CTL (CTLG) using a Schiff base reaction involving oxidized dextran and carboxymethyl chitosan. The study investigated the bone reparative properties of CTLG through molecular docking, western blot techniques, and transcriptome analysis. The particle sizes of CTL were measured at 248.90 ± 14.03 nm, respectively, with zeta potentials of +36.68 ± 5.43 mV, respectively. CTLG showed excellent antioxidant capacity in vitro. It also has a good inhibitory effect on Escherichia coli and Staphylococcus aureus, with inhibition rates of 93.88 ± 1.59 % and 88.56 ± 2.83 % respectively. The results of 5-ethynyl-2 '-deoxyuridine staining, alkaline phosphatase staining and alizarin red staining showed that CTLG also had the potential to promote the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1). The study revealed that CTLG enhances the expression of osteogenic proteins by regulating the Wnt signaling pathway, shedding light on the potential application of TAX and bone regeneration mechanisms.


Assuntos
Proliferação de Células , Quitosana , Hidrogéis , Lipossomos , Osteoblastos , Quercetina , Quercetina/análogos & derivados , Crânio , Via de Sinalização Wnt , Animais , Quitosana/análogos & derivados , Quitosana/química , Quitosana/farmacologia , Quercetina/farmacologia , Quercetina/química , Lipossomos/química , Via de Sinalização Wnt/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos , Crânio/efeitos dos fármacos , Crânio/patologia , Crânio/metabolismo , Ratos , Regeneração Óssea/efeitos dos fármacos , Ratos Sprague-Dawley , Osteogênese/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Diferenciação Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular
12.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474556

RESUMO

Chemotherapy is a well-established method for treating cancer, but it has limited effectiveness due to its high dosage and harmful side effects. To address this issue, researchers have explored the use of photothermal agent nanoparticles as carriers for precise drug release in vivo. In this study, three different sizes of polydopamine nanoparticles (PDA-1, PDA-2, and PDA-3) were synthesized and evaluated. PDA-2 was selected for its optimal size, encapsulation rate, and drug loading rate. The release of the drug from PDA-2@TAX was tested at different pH and NIR laser irradiation levels. The results showed that PDA-2@TAX released more readily in an acidic environment and exhibited a high photothermal conversion efficiency when exposed to an 808 nm laser. In vitro experiments on ovarian cancer cells demonstrated that PDA-2@TAX effectively inhibited cell proliferation, highlighting its potential for synergistic chemotherapy-photothermal treatment.


Assuntos
Hipertermia Induzida , Indóis , Nanopartículas , Neoplasias Ovarianas , Polímeros , Quercetina/análogos & derivados , Humanos , Feminino , Fototerapia/métodos , Hipertermia Induzida/métodos , Neoplasias Ovarianas/tratamento farmacológico , Doxorrubicina/farmacologia
13.
Int J Biol Macromol ; 262(Pt 1): 129937, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325683

RESUMO

Diabetic wounds are typically chronic wounds and the healing process is limited by problems such as high blood glucose levels, bacterial infections, and other issues that make wound healing difficult. Designing drug-loaded wound dressings is an effective way to promote diabetic wound healing. In this study, we developed an SA/PVA nanofiber (SPS) containing Shikonin (SK) for the treatment of diabetic wounds. The prepared nanofibers were uniform in diameter, had good hydrophilicity and high water vapor permeability, and effectively promoted gas exchange between the wound site and the outside world. The results of in vitro experiments showed that SPS was effective in antimicrobial, antioxidant, and biocompatible. In vivo tests showed that the wound healing rate of mice treated with SPS reached 85.5 %. Immunohistochemical staining results showed that SPS was involved in the diabetic wound healing process through the up-regulation of growth factors (CD31, HIF-1α) and the down-regulation of inflammatory factors (CD68). Western blotting experiments showed that SPS attenuated the inflammation through the inhibition of the IκBα/NF-κB signaling pathway. These results suggest that SPS is a promising candidate for future clinical application of chronic wound dressings.


Assuntos
Diabetes Mellitus , Nanofibras , Naftoquinonas , Animais , Camundongos , Álcool de Polivinil/farmacologia , Alginatos/farmacologia , Cicatrização , Antibacterianos/farmacologia
14.
Int J Biol Macromol ; 263(Pt 1): 130226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368971

RESUMO

With the improvement of modern living standards, the challenge of diabetic wound healing has significantly impacted the public health system. In this study, our objective was to enhance the bioactivity of taxifolin (TAX) by encapsulating it in liposomes using a thin film dispersion method. Additionally, polyvinyl alcohol/carboxymethyl chitosan-based hydrogels were prepared through repeated freeze-thawing. In vitro and in vivo experiments were conducted to investigate the properties of the hydrogel and its effectiveness in promoting wound healing in diabetic mice. The results of the experiments revealed that the encapsulation efficiency of taxifolin liposomes (TL) was 89.80 ± 4.10 %, with a drug loading capacity of 17.58 ± 2.04 %. Scanning electron microscopy analysis demonstrated that the prepared hydrogels possessed a porous structure, facilitating gas exchange and the absorption of wound exudates. Furthermore, the wound repair experiments in diabetic mice showed that the TL-loaded hydrogels (TL-Gels) could expedite wound healing by suppressing the inflammatory response and promoting the expression of autophagy-related proteins. Overall, this study highlights that TL-Gels effectively reduce wound healing time by modulating the inflammatory response and autophagy-related protein expression, thus offering promising prospects for the treatment of hard-to-heal wounds induced by diabetes.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Quercetina/análogos & derivados , Camundongos , Animais , Quitosana/química , Lipossomos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Álcool de Polivinil/química , Cicatrização , Hidrogéis/química , Inflamação , Autofagia
15.
Int J Biol Macromol ; 263(Pt 1): 130256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368995

RESUMO

The current clinical treatment of diabetic wounds is still based on oxygen therapy, and the slow healing of skin wounds due to hypoxia has always been a key problem in the repair of chronic skin injuries. To overcome this problem, the oxygen-producing matrix CaO2NPS based on the temperature-sensitive dihydromyricetin-loaded hydrogel was prepared. In vitro activity showed that the dihydromyricetin (DHM) oxygen-releasing temperature-sensitive hydrogel composite (DHM-OTH) not only provided a suitable oxygen environment for cells around the wound to survive but also had good biocompatibility and various biological activities. By constructing a T2D wound model, we further investigated the repairing effect of DHM-OTH on chronic diabetic skin wounds and the mechanisms involved. DHM-OTH was able to reduce inflammatory cells and collagen deposition and promote angiogenesis and cell proliferation for diabetic wound healing. These in vitro and in vivo data suggest that DHM-OTH accelerates diabetic wound repair as a novel method to efficiently deliver oxygen to wound tissue, providing a promising strategy to improve diabetic wound healing.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Flavonóis , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Poloxâmero/farmacologia , Quitosana/farmacologia , Cicatrização , Oxigênio , Diabetes Mellitus Experimental/tratamento farmacológico , Bandagens
16.
Polymers (Basel) ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337233

RESUMO

Chitosan is a linear polyelectrolyte with active hydroxyl and amino groups that can be made into chitosan-based hydrogels by different cross-linking methods. Chitosan-based hydrogels also have a three-dimensional network of hydrogels, which can accommodate a large number of aqueous solvents and biofluids. CS, as an ideal drug-carrying material, can effectively encapsulate and protect drugs and has the advantages of being nontoxic, biocompatible, and biodegradable. These advantages make it an ideal material for the preparation of functional hydrogels that can act as wound dressings for skin injuries. This review reports the role of chitosan-based hydrogels in promoting skin repair in the context of the mechanisms involved in skin injury repair. Chitosan-based hydrogels were found to promote skin repair at different process stages. Various functional chitosan-based hydrogels are also discussed.

17.
Int J Biol Macromol ; 258(Pt 2): 129118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163502

RESUMO

Colitis can significantly impact daily life. This study utilized DSS to induce acute colitis in mice and examined the regulatory effect of arabinogalactan (AG). The findings demonstrated that AG intake effectively alleviated the phenotype of DSS-induced colitis in mice and protected against small intestine damage. Furthermore, AG suppressed the secretion of pro-inflammatory factors TNF-α and IL-1ß, while promoting the secretion of anti-inflammatory factor IL-10. It also inhibited the secretion of LPS in serum and MPO in colon tissue. Additionally, AG regulated the NF-κB/MAPK/PPARγ signaling pathway and inhibited the NLRP3 inflammasome signaling pathway, thereby ameliorating DSS-induced colitis inflammation in mice. AG also influenced the metabolism of short-chain fatty acids, particularly butyrate, in the intestinal tract of mice. Moreover, AG modulated and enhanced the composition of intestinal flora in mice with colitis, increasing the diversity of dominant flora and promoting the growth of beneficial bacteria. These results highlight the protective effects of arabinogalactan against colitis and its potential applications in the food industry.


Assuntos
Colite Ulcerativa , Colite , Galactanos , Microbioma Gastrointestinal , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Colite/induzido quimicamente , Transdução de Sinais , NF-kappa B/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
18.
Int J Biol Macromol ; 259(Pt 1): 129124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176509

RESUMO

The wound of diabetes has long-term excessive inflammation leading to wound fibrosis and scar formation. In the process of diabetic wound healing, good wound dressing is required for intervention. In this study, we designed a dihydromyricetin-loaded hydrogel (PCD) based on phellinus igniarius polysaccharide and l-arginine modified chitosan as an alternative material to promote diabetes wound healing. PCD had a uniform porous structure, good thermal stability, excellent mechanical properties, high water absorption, excellent antioxidant and anti-inflammatory activities and good biocompatibility and biodegradability. In addition, in the full-thickness skin trauma model of diabetes, PCD significantly inhibited the JNK signaling pathway to reduce inflammatory response, and significantly down-regulated the expression of TGF-ß1, Smad2, Smad3 and Smad4 to directly inhibit the TGF-ß/Smad signaling pathway to accelerate wound healing and slow down scar formation in diabetes mice. Therefore, PCD has a broad application prospect in promoting diabetes wound healing.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Flavonóis , Phellinus , Camundongos , Animais , Quitosana/farmacologia , Quitosana/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cicatriz , Hidrogéis , Transdução de Sinais
19.
Int J Biol Macromol ; 259(Pt 1): 129160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181908

RESUMO

The healing of wounds in diabetics is commonly delayed by recurring infections and persistent inflammation at the wound site. For this reason, we conducted a study using the electrospinning technique to create nanofiber membranes consisting of polyvinylpyrrolidone/chitosan (PVP/CS) and incorporated dihydromyricetin (DHM) into them. Infrared Fourier transform spectroscopy and scanning electron microscopy were used to analyze the nanofiber membrane. Experimental results in vitro have shown that PVP/CS/DHM has exceptional properties such as hydrophilicity, porosity, water vapor transport rate, antioxidant capacity, and antibacterial activity. Moreover, our study has demonstrated that the application of PVP/CS/DHM can significantly improve wound healing in diabetic mice. After an 18-day treatment period, a remarkable wound closure rate of 88.63 ± 1.37 % was achieved. The in vivo experiments revealed that PVP/CS/DHM can promote diabetic wound healing by suppressing the activation of TLR4/MyD88/NF-κB signaling pathway and enhancing autophagy-related protein as well as CD31 and HIF-1α expression in skin tissues. This study showed that PVP/CS/DHM is a promising wound dressing.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Flavonóis , Nanofibras , Camundongos , Animais , Quitosana/química , Povidona , Diabetes Mellitus Experimental/tratamento farmacológico , Nanofibras/química , Cicatrização , Antibacterianos/química , Anti-Inflamatórios
20.
Int J Biol Macromol ; 259(Pt 2): 129356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218300

RESUMO

Various types of skin wounds pose challenges in terms of healing and susceptibility to infection, which can have a significant impact on physical and mental well-being, and in severe cases, may result in amputation. Conventional wound dressings often fail to provide optimal support for these wounds, thereby impeding the healing process. As a result, there has been considerable interest in the development of multifunctional polymer matrix hydrogel scaffolds for wound healing. This review offers a comprehensive review of the characteristics of polysaccharide-based hydrogel scaffolds, as well as their applications in different types of wounds. Additionally, it evaluates the advantages and disadvantages associated with various types of multifunctional polymer and polysaccharide-based hydrogel scaffolds. The objective is to provide a theoretical foundation for the utilization of multifunctional hydrogel scaffolds in promoting wound healing.


Assuntos
Amputação Cirúrgica , Hidrogéis , Hidrogéis/farmacologia , Polímeros , Polissacarídeos/farmacologia , Cicatrização , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...