Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; : e3494, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016609

RESUMO

Mechanistic models mostly focus on the target protein and some selected process- or product-related impurities. For a better process understanding, however, it is advantageous to describe also reoccurring host cell protein impurities. Within the purification of biopharmaceuticals, the binding of host cell proteins to a chromatographic resin is far from being described comprehensively. For a broader coverage of the binding characteristics, large-scale proteomic data and systems level knowledge on protein interactions are key. However, a method for determining binding parameters of the entire host cell proteome to selected chromatography resins is still lacking. In this work, we have developed a method to determine binding parameters of all detected individual host cell proteins in an Escherichia coli harvest sample from large-scale proteomics experiments. The developed method was demonstrated to model abundant and problematic proteins, which are crucial impurities to be removed. For these 15 proteins covering varying concentration ranges, the model predicts the independently measured retention time during the validation gradient well. Finally, we optimized the anion exchange chromatography capture step in silico using the determined isotherm parameters of the persistent host cell protein contaminants. From these results, strategies can be developed to separate abundant and problematic impurities from the target antigen.

2.
Biotechnol J ; 18(9): e2300068, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37208824

RESUMO

Mass-spectrometry-based proteomics is increasingly employed to monitor purification processes or to detect critical host cell proteins in the final drug substance. This approach is inherently unbiased and can be used to identify individual host cell proteins without prior knowledge. In process development for the purification of new biopharmaceuticals, such as protein subunit vaccines, a broader knowledge of the host cell proteome could promote a more rational process design. Proteomics can establish qualitative and quantitative information on the complete host cell proteome before purification (i.e., protein abundances and physicochemical properties). Such information allows for a more rational design of the purification strategy and accelerates purification process development. In this study, we present an extensive proteomic characterisation of two E. coli host cell strains widely employed in academia and industry to produce therapeutic proteins, BLR and HMS174. The established database contains the observed abundance of each identified protein, information relating to their hydrophobicity, the isoelectric point, molecular weight, and toxicity. These physicochemical properties were plotted on proteome property maps to showcase the selection of suitable purification strategies. Furthermore, sequence alignment allowed integration of subunit information and occurrences of post-translational modifications from the well-studied E. coli K12 strain.


Assuntos
Escherichia coli , Proteoma , Escherichia coli/metabolismo , Proteoma/metabolismo , Proteômica , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...