RESUMO
Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by low levels of functional survival motor neuron protein (SMN) resulting from a deletion or loss of function mutation of the survival motor neuron 1 (SMN1) gene. Branaplam (1) elevates levels of full-length SMN protein in vivo by modulating the splicing of the related gene SMN2 to enhance the exon-7 inclusion and increase levels of the SMN. The intramolecular hydrogen bond present in the 2-hydroxyphenyl pyridazine core of 1 enforces a planar conformation of the biaryl system and is critical for the compound activity. Scaffold morphing revealed that the pyridazine could be replaced by a 1,3,4-thiadiazole, which provided additional opportunities for a conformational constraint of the biaryl through intramolecular 1,5-sulfur-oxygen (S···O) or 1,5-sulfur-halogen (S···X) noncovalent interactions. Compound 26, which incorporates a 2-fluorophenyl thiadiazole motif, demonstrated a greater than 50% increase in production of full-length SMN protein in a mouse model of SMA.
Assuntos
Desenho de Fármacos , Splicing de RNA , Tiadiazóis/química , Animais , Meia-Vida , Halogênios/química , Humanos , Masculino , Camundongos , Conformação Molecular , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Oxigênio/química , Piridazinas/química , Splicing de RNA/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Enxofre/química , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Tiadiazóis/metabolismo , Tiadiazóis/farmacologiaRESUMO
MALT1 plays a central role in immune cell activation by transducing NF-κB signaling, and its proteolytic activity represents a key node for therapeutic intervention. Two cycles of scaffold morphing of a high-throughput biochemical screening hit resulted in the discovery of MLT-231, which enabled the successful pharmacological validation of MALT1 allosteric inhibition in preclinical models of humoral immune responses and B-cell lymphomas. Herein, we report the structural activity relationships (SARs) and analysis of the physicochemical properties of a pyrazolopyrimidine-derived compound series. In human T-cells and B-cell lymphoma lines, MLT-231 potently and selectively inhibits the proteolytic activity of MALT1 in NF-κB-dependent assays. Both in vitro and in vivo profiling of MLT-231 support further optimization of this in vivo tool compound toward preclinical characterization.
Assuntos
Inibidores de Caspase/uso terapêutico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ureia/análogos & derivados , Ureia/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Caspase/síntese química , Inibidores de Caspase/farmacologia , Descoberta de Drogas , Feminino , Humanos , Imunidade Humoral/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/síntese química , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Ureia/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Realizing the full potential of co-crystals enhanced kinetic solubility demands a comprehensive understanding of the mechanisms of dissolution, phase conversion, nucleation and crystal growth, and of the complex interplay between the active pharmaceutical ingredient (API), the coformer and co-existing forms in aqueous media. One blueprint provided by nature to keep poorly water-soluble bases in solution is the complexation with phenolic acids. Consequently, we followed a bioinspired strategy for the engineering of co-crystals of a poorly water-soluble molecule - Imatinib - with a phenolic acid, syringic acid (SYA). The dynamics of dissolution and solution-mediated phase transformations were monitored by Nuclear Magnetic Resonance (NMR) spectroscopy, providing mechanistic insights into the 60 fold-increased long lasting concentrations achieved by the syringate co-crystals as compared to Imatinib base and Imatinib mesylate. This lasting effect was linked to SYA's ability to delay the formation and nucleation of Imatinib hydrate - the thermodynamically stable form in aqueous media - through a metastable association of SYA with Imatinib in solution. Results from permeability studies evidenced that SYA did not impact Imatinib's permeability across membranes while suggesting improved bioavailability through higher kinetic solubility at the biological barriers. These results reflect that some degree of hydrophobicity of the coformer might be key to extend the kinetic solubility of co-crystals with hydrophobic APIs. Understanding how kinetic supersaturation can be shaped by the selection of an interactive coformer may help achieving the needed performance of new forms of poorly water-soluble, slowly dissolving APIs.
Assuntos
Liberação Controlada de Fármacos , Ácido Gálico/análogos & derivados , Mesilato de Imatinib/farmacocinética , Disponibilidade Biológica , Química Farmacêutica/métodos , Cristalização , Ácido Gálico/química , Mesilato de Imatinib/química , Espectroscopia de Ressonância Magnética , Permeabilidade , Solubilidade , Termodinâmica , ÁguaRESUMO
Signal peptide peptidase-like 2a (SPPL2a) is an aspartic intramembrane protease which has recently been shown to play an important role in the development and function of antigen presenting cells such as B lymphocytes and dendritic cells. In this paper, we describe the discovery of the first selective and orally active SPPL2a inhibitor (S)-2-cyclopropyl-N1-((S)-5,11-dioxo-10,11-dihydro-1H,3H,5H-spiro[benzo[d]pyrazolo[1,2-a][1,2]diazepine-2,1'-cyclopropan]-10-yl)-N4-(5-fluoro-2-methylpyridin-3-yl)succinamide 40 (SPL-707). This compound shows adequate selectivity against the closely related enzymes γ-secretase and SPP and a good pharmacokinetic profile in mouse and rat. Compound 40 significantly inhibited processing of the SPPL2a substrate CD74/p8 fragment in rodents at doses ≤10 mg/kg b.i.d. po. Oral dosing of 40 for 11 days at ≥10 mg/kg b.i.d. recapitulated the phenotype seen in Sppl2a knockout (ko) and ENU mutant mice (reduced number of specific B cells and myeloid dendritic cells). Thus, we believe that SPPL2a represents an interesting and druggable pharmacological target, potentially providing a novel approach for the treatment of autoimmune diseases by targeting B cells and dendritic cells.
Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Fatores Imunológicos/farmacologia , Fatores Imunológicos/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Células HEK293 , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Concentração Inibidora 50 , Camundongos , Pirazóis/administração & dosagem , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/farmacologia , RatosRESUMO
RAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify. Herein, we describe 14 (RAF709) [ Aversa , Biaryl amide compounds as kinase inhibitors and their preparation . WO 2014151616, 2014 ], a selective B/C RAF inhibitor, which was developed through a hypothesis-driven approach focusing on drug-like properties. A key challenge encountered in the medicinal chemistry campaign was maintaining a balance between good solubility and potent cellular activity (suppression of pMEK and proliferation) in KRAS mutant tumor cell lines. We investigated the small molecule crystal structure of lead molecule 7 and hypothesized that disruption of the crystal packing would improve solubility, which led to a change from N-methylpyridone to a tetrahydropyranyl oxy-pyridine derivative. 14 proved to be soluble, kinase selective, and efficacious in a KRAS mutant xenograft model.
Assuntos
2,2'-Dipiridil/análogos & derivados , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Quinases raf/antagonistas & inibidores , Proteínas ras/genética , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzamidas/química , Cristalografia por Raios X , Cães , Desenho de Fármacos , Descoberta de Drogas , Estabilidade de Medicamentos , Humanos , Concentração Inibidora 50 , Camundongos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Ratos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
High throughput screening and subsequent hit validation identified 4-isopropyl-3-(2-((1-phenylethyl)amino)pyrimidin-4-yl)oxazolidin-2-one as a potent inhibitor of IDH1R132H. Synthesis of the four separate stereoisomers identified the (S,S)-diastereomer (IDH125, 1f) as the most potent isomer. This also showed reasonable cellular activity and excellent selectivity vs IDH1wt. Initial structure-activity relationship exploration identified the key tolerances and potential for optimization. X-ray crystallography identified a functionally relevant allosteric binding site amenable to inhibitors, which can penetrate the blood-brain barrier, and aided rational optimization. Potency improvement and modulation of the physicochemical properties identified (S,S)-oxazolidinone IDH889 (5x) with good exposure and 2-HG inhibitory activity in a mutant IDH1 xenograft mouse model.
RESUMO
A series of 2-oxopiperazine derivatives were designed from the pyrrolopiperazinone cell-based screening hit 4 as a dengue virus inhibitor. Systematic investigation of the structure-activity relationship (SAR) around the piperazinone ring led to the identification of compound (S)-29, which exhibited potent anti-dengue activity in the cell-based assay across all four dengue serotypes with EC50<0.1µM. Cross-resistant analysis confirmed that the virus NS4B protein remained the target of the new oxopiperazine analogs obtained via scaffold morphing from the HTS hit 4.
Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Piperazinas/farmacologia , Linhagem Celular , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Relação Estrutura-AtividadeRESUMO
A fragment library consisting of 3D-shaped, natural product-like fragments was assembled. Library construction was mainly performed by natural product degradation and natural product diversification reactions and was complemented by the identification of 3D-shaped, natural product like fragments available from commercial sources. In addition, during the course of these studies, novel rearrangements were discovered for Massarigenin C and Cytochalasin E. The obtained fragment library has an excellent 3D-shape and natural product likeness, covering a novel, unexplored and underrepresented chemical space in fragment based drug discovery (FBDD).
Assuntos
Produtos Biológicos/química , Citocalasinas/química , Lactonas/química , Bibliotecas de Moléculas Pequenas/química , Compostos de Espiro/química , Produtos Biológicos/síntese química , Cristalografia por Raios X , Citocalasinas/síntese química , Descoberta de Drogas , Lactonas/síntese química , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Compostos de Espiro/síntese químicaRESUMO
Permeability and oral bioavailability of macrocyclic peptides still represent difficult challenges in drug discovery. Despite the recognized potential of macrocyclic peptides as therapeutics, their use is still restricted to extracellular targets and intravenous administration. Indeed, macrocyclic peptides generally suffer from limited proteolytic stability, high clearance, and poor membrane permeability, and this leads to the absence of systemic exposure after oral administration. To overcome these limitations, we started to investigate the development of a general cyclic decapeptide scaffold that possesses ideal features for cell permeability and oral exposure. On the basis of a rigid hairpin structure, the scaffold design aimed to decrease the overall polarity of the compound, thereby limiting the energetic cost of NH desolvation and the entropy penalty during cell penetration. The results of this study also demonstrate the importance of rigidity for the ß-turn design regarding clearance. To stabilize the scaffold in the desired ß-hairpin conformation, the introduction of d-proline at the i+1 turn position proved to be beneficial for both permeability and clearance. As a result, cyclopeptide decamers with unprecedented high values for oral bioavailability and exposure are reported herein. NMR spectroscopy conformation and dynamic analysis confirmed, for selected examples, the rigidity of the scaffold and the presence of transannular hydrogen bonds in polar and apolar environments. Furthermore, we showed, for one compound, that its transition from a polar environment to an apolar one was accompanied by an increased molecular motion, revealing an entropy contribution to membrane permeation.
Assuntos
Desenho de Fármacos , Peptídeos Cíclicos/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Cães , Meia-Vida , Ligação de Hidrogênio , Células Madin Darby de Rim Canino , Espectroscopia de Ressonância Magnética , Masculino , Microssomos Hepáticos/metabolismo , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Conformação Proteica , Ratos , Ratos Sprague-DawleyRESUMO
The chemical behavior of various oligoenes 2 has been studied. The catalytic hydrogenation of diene 3 yielded monoene 4. Triene 7 was hydrogenated to diene 8, monoene 9 and saturated hydrocarbon 10. Bromine addition to 3 and 7 yielded the dibromides 17 and 18, respectively, i.e., the oligoene system has been attacked at its terminal olefinic carbon atoms. Analogously, the higher vinylogs 19 and 20 yielded the 1,8- and 1,10-bromine adduts 23 and 24, respectively, when less than 1 equivalent of bromine was employed. Treatment of tetraene 19 with excess bromine provided tetrabromide 25. In epoxidation reactions, both with meta-chloroperbenzoic acid (MCPBA) and dimethyldioxirane (DMDO) two model oligoenes were studied: triene 7 and tetraene 19. Whereas 7 furnished the rearrangement product 31 with MCPBA, it yielded the symmetrical epoxide 32 with DMDO. Analogously, 19 was converted to mono-epoxide 33 with MCPBA and to 34 with DMDO. Diels-Alder addition of 7 with N-phenyltriazolinedione (PTAD) did not take place. Extension of the conjugated π-system to the next higher vinylog, 19, caused NPTD-addition to the symmetrical adduct 37 in good yield. Comparable results were observed on adding NPTD (equivalent amount) to pentaene 20 and hexaene 21. Using 36 in excess provided the 2:1-adduct 40 from 21 and led to a complex mixture of adducts from heptaene 22. With tetracyanoethylene (TCNE) as the dienophile, tetraolefin 19 yielded the symmetrical adduct 43, although the reaction temperature had to be increased. Pentaene 20 and hexaene 21 led to corresponding results, adducts 44 and 45 being produced in acceptable yields. With nonaene 42 and TCNE the 2:1-adduct 48 was generated according to its spectroscopic data. Exploratory photochemical studies were carried out with tetraene 19 as the model compound. On irradiation this reacted with oxygen to the stable endo-peroxide 52.
RESUMO
Spiropyrazolopyridone 1 was identified, as a novel dengue virus (DENV) inhibitor, from a DENV serotype 2 (DENV-2) high-throughput phenotypic screen. As a general trend within this chemical class, chiral resolution of the racemate revealed that R enantiomer was significantly more potent than the S. Cell-based lead optimization of the spiropyrazolopyridones focusing on improving the physicochemical properties is described. As a result, an optimal compound 14a, with balanced in vitro potency and pharmacokinetic profile, achieved about 1.9 log viremia reduction at 3 × 50 mg/kg (bid) or 3 × 100 mg/kg (QD) oral doses in the dengue in vivo mouse efficacy model.
RESUMO
The [2.2]paracyclophane moiety is used as a spacer to connect the ends of a hex-3-ene-1,5-diyne unit, a π-system that on thermolysis usually cycloaromatizes to a benzene ring (Bergman cyclization). For the preparation of the pseudo-geminally-bridged system 9, the diacetylene 3 was chain-extended to the diol 16, which after conversion to the pseudo-geminal dibromide 17 was ring-closed by treatment with LiHMDS/HMPA to the [2.2]paracyclophane enediyne 9. Whereas the McMurry coupling of the pseudo-ortho bisaldehyde 24 resulted in the formation of the hexadienyne-bridged cyclophane 27, the pseudo-ortho-bridged hydrocarbon 11 was obtained by preparing first the diol 28 from 24, converting the latter into the dioxolane 29, which in the last step furnished the olefin 11 by treatment with Tf2 O/EtN(iPr)2 . The authentic Bergman product 10 of the pseudo-gem-bridged hexenediyne 9 was synthesized by a conventional sequence starting from the ethynyl formyl substrate 18. Since the pseudo-ortho-enediyne-bridged hydrocarbon 11 is thermally labile, its benzannelated derivate 34 was prepared. No classical Bergman cyclization reactions could be observed for any of the [2.2]paracyclophane-bridged hexenediynes prepared here. In the pseudo-gem-series the fulvenes 14 and 15 were the only products that could be identified under thermal conditions (McMurry coupling); the benzannelated substrate 34 gave the benzofulvene-bridged cyclophane 36 on photolysis. Bergman cyclizations yielding fulvene derivatives are extremely rare. The mechanism of the cyclization of 9 and 34 is discussed, using compliance constants. The structure assignments of the hydrocarbons synthesized in this study are based on spectroscopic studies as well as X-ray structural analyses for 9, 10, 11, 27, and 34.
RESUMO
Ethynyl[2.2]paracyclophanes are shown to be useful substrates for the preparation of complex, highly unsaturated carbon frameworks. Thus both the pseudo-geminal- 2 and the pseudo-ortho-diethynylcyclophane 4 can be dimerized by Glaser coupling to the respective dimers 9/10 and 11/12. Whereas the former isomer pair could not be separated so far, the latter provided the pure diastereomers after extensive column chromatography/recrystallization. Isomer 11 is chiral and could be separated on a column impregnated with cellulose tris(3,5-dimethylphenyl)carbamate. The bridge-extended cyclophane precursor 18 furnished the ring-enlarged cyclophanes 19 and 20 on Glaser-Hay coupling. Cross-coupling of 4 and the planar building block 1,2-diethynylbenzene (1) yielded the chiral hetero dimer 22 as the main product. An attempt to prepare the biphenylenophane 27 from the triacetylene 24 by CpCo(CO)2-catalyzed cycloisomerization resulted in the formation of the cyclobutadiene Co-complex 26. Besides by their usual spectroscopic and analytical data, the new cyclophanes 11, 12, 19, 20, 22, and 26 were characterized by X-ray structural analysis.
RESUMO
With the goal of eventually synthesizing [5]radialene (3), the still missing member of the parent radialene hydrocarbons, we have prepared the pentaacetates 21 and 31, the pentabromide 29 and the hexabromide 32. In principle these should be convertible by elimination reactions to the desired target molecule.
RESUMO
The title compound, C8H12Br4, displays crystallographic inversion symmetry, so that the cyclobutane ring is exactly planar. The ring C-C bond with eclipsed substituents is lengthened somewhat to 1.572â (5)â Å. The packing can be described in terms of three Br...Br contacts; two of these combine to form layers of molecules parallel to the ac plane, while the third crosslinks the layers in the third dimension. A simple topological descriptor for systems involving Br···Br contacts is proposed.
RESUMO
Tetrahydropyrazolo[1,5-a]pyrimidine scaffold was identified as a hit series from a Mycobacterium tuberculosis (Mtb) whole cell high through-put screening (HTS) campaign. A series of derivatives of this class were synthesized to evaluate their structure-activity relationship (SAR) and structure-property relationship (SPR). Compound 9 had a promising in vivo DMPK profile in mouse and exhibited potent in vivo activity in a mouse efficacy model, achieving a reduction of 3.5 log CFU of Mtb after oral administration to infected mice once a day at 100 mg/kg for 28 days. Thus, compound 9 is a potential candidate for inclusion in combination therapies for both drug-sensitive and drug-resistant TB.
RESUMO
Four isomeric dialdehydes 4, readily available from cycloaddition of propiolic aldehyde (2) to 1,2,4,5-hexatetraene (1), were separated by chromatography and recrystallization, and were characterized by their spectroscopic data. The individual isomers can now be easily identified from their ¹H NMR spectra even if only one of them is present.
RESUMO
Starting from the readily available α,ß-unsaturated ketone, 3-tert-butyl-4,4-dimethyl-2-pentenal, higher vinylogues, and fully terminally tert-butylated polyolefins with up to 13 consecutive conjugated double bonds have been prepared by either McMurry dimerization or Wittig chain-elongation routes. The highly unsaturated conjugated π systems, which show a remarkable stability, have been characterized by spectroscopic methods and, in many cases, by X-ray structural analysis. The yields are high enough to allow for thorough chemical reactivity studies.
RESUMO
Disaccharide phosphorylases are able to catalyze both the synthesis and the breakdown of disaccharides and have thus emerged as attractive platforms for tailor-made sugar synthesis. Cellobiose phosphorylase from Cellulomonas uda (CPCuda) is an enzyme that belongs to glycoside hydrolase family 94 and catalyzes the reversible breakdown of cellobiose [beta-D-glucopyranosyl-(1,4)-D-glucopyranose] to alpha-D-glucose-1-phosphate and D-glucose. Crystals of ligand-free recombinant CPCuda and of its complexes with substrates and reaction products yielded complete X-ray diffraction data sets to high resolution using synchrotron radiation but suffered from significant variability in diffraction quality. In at least one case an intriguing space-group transition from a primitive monoclinic to a primitive orthorhombic lattice was observed during data collection. The structure of CPCuda was determined by maximum-likelihood molecular replacement, thus establishing a starting point for an investigation of the structural and mechanistic determinants of disaccharide phosphorylase activity.
Assuntos
Cellulomonas/enzimologia , Glucosiltransferases/química , Cristalização , Cristalografia por Raios X , Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína , Especificidade por SubstratoRESUMO
LysR-type transcriptional regulators (LTTRs) constitute the largest family of regulators in prokaryotes. The full-length structures of the LTTR TsaR from Comamonas testosteroni T-2 and its complex with the natural inducer para-toluensulfonate have been characterized by X-ray diffraction. Both ligand-free and complexed forms reveal a dramatically different quaternary structure from that of CbnR from Ralstonia eutropha, or a putative LysR-type regulator from Pseudomonas aeruginosa, the only other determined full-length structures of tetrameric LTTRs. Although all three show a head-to-head tetrameric ring, TsaR displays an open conformation, whereas CbnR and PA01-PR present additional contacts in opposing C-terminal domains that close the ring. Such large differences may be due to a broader structural versatility than previously assumed or either, reflect the intrinsic flexibility of tetrameric LTTRs. On the grounds of the sliding dimer hypothesis of LTTR activation, we propose a structural model in which the closed structures could reflect the conformation of a ligand-free LTTR, whereas inducer binding would bring about local changes to disrupt the interface linking the two compact C-terminal domains. This could lead to a TsaR-like, open structure, where the pairs of recognition helices are closer to each other by more than 10 A.